43 research outputs found

    The oyster genome reveals stress adaptation and complexity of shell formation

    Get PDF
    The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa. Š 2012 Macmillan Publishers Limited. All rights reserved

    Optimal dispatching of electric‐heat‐hydrogen integrated energy system based on Stackelberg game

    No full text
    Abstract The interest conflict among entities in the integrated energy system (IES) has a great challenge to operation decisions of IES. With regards to this, an optimal dispatching model of electric‐heat‐hydrogen IES based on Stackelberg game is proposed. Firstly, an energy producer (EP) model is formulated which considered the full utilization of hydrogen energy and involved the conversion of hydrogen energy to electricity and heat energy. Meanwhile, the demand response amount is integrated into the objective function of load aggregator (LA) in order to encourage consumers to adjust their consumption behaviour. Secondly, by analyzing the characteristics of price information interaction among EP, energy system operator (ESO), and LA, the payoffs of each entity in IES are reformulated. Finally, a Stackelberg game model is established with ESO as the dominator guiding price information, EP and LA as the followers whose private information is confidential. Genetic algorithm and quadratic programming algorithm (GA‐QP) are employed to solve the developed model. Numerical experiments are carried out on an actual park‐level IES in northern China to demonstrate the effectiveness of the proposed model in promoting the benefit equilibrium among various entities

    Regeneration of AgXO@SBA-15 for reactive adsorptive desulfurization of fuel

    No full text
    Abstract Adsorbent regeneration is critical for a continuous adsorption–regeneration process and often underestimated. In this work, the regeneration of bifunctional AgXO@SBA-15 for [O]-induced reactive adsorptive desulfurization of liquid fuel is reported and further investigated. The spent AgXO@SBA-15 was regenerated in various types of solvents followed by calcination and tested in multiple desulfurization–regeneration cycles. The effects of regenerate solvents were also compared systematically. The original and regenerated AgXO@SBA-15 was characterized by X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, N2 adsorption, X-ray photoelectron spectroscopy and atomic absorption spectrometry. The recovery of desulfurization capacity using various solvents follows the order of acetonitrile > acetone > ethanol > methanol > water. Owing to the complete reduction of silver species to Ag0 and severe agglomeration of Ag0, the bifunctional AgXO@SBA-15 demonstrating > 85% (2.60 mg-S/g) of sulfur removal dramatically reduced to < 46% (1.56 mg-S/g) after only 1st-cycle regeneration. It is suggested that polar organic species strongly adsorbed (or residual) on the spent AgXO@SBA-15, in that case, after solvent wash may contribute to the accelerated decomposition of Ag+ to Ag0 in the following calcination step. The desulfurization capacity decreased rather mildly in the later regeneration runs. Cautious choice of regeneration conditions and strategies to rational design stabilized adsorbents is required to avert the adsorbent deactivation

    Brain insulin resistance deteriorates cognition by altering the topological features of brain networks

    No full text
    Insulin resistance represents one of the mechanisms underlying the link between type 2 diabetes (T2D) and Alzheimer's disease (AD), and we explored its in vivo neurobiology related to cognition based on a pathway-based genetic association analyses. Eighty-seven mild cognitive impairment (MCIs) subjects and 135 matched controls (HCs) were employed at baseline, and they underwent functional MRI scans, clinical evaluations and exon sequencings of 20 genes related to brain insulin resistance. A longitudinal study for an average of 35 months was performed to assess their cognitive decline over time. By using cognition as the phenotype, we detected genes that modified cognitive impairments, including AKT2, PIK3CB, IGF1R, PIK3CD, MTOR, IDE, AKT1S1 and AKT1. Based on these loci, the mass univariate modeling was utilized to construct the functional network. The MCIs showed disconnections mainly in the cerebellum-frontal-temporal regions, while compensations may occur in frontal-parietal regions to maintain the overall network efficiency. Moreover, the behavioral significance of the network was highlighted, as topological characteristics of the medial temporal lobe and the prefrontal cortex partially determine longitudinal cognitive decline. Our results suggested that the restoration of insulin activity represents a promising therapeutic target for alleviating cognitive decline associated with T2D and AD

    Interface Adhesion Property and Laser Ablation Performance of GAP-PET Double-Layer Tape with Plasma Treatment

    No full text
    In the field of laser ablation micro-propulsion, the property of double-layer tape has significant impact on the propulsion performance. In this paper, low temperature plasma was used to treat the surface of polyethylene terephthalate (PET) to improve its adhesion with energetic polymer. The PET surface pre- and post-plasma treatment was characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), and the enhancement mechanism of the interface adhesion was discussed. In addition, the ablation performance of the double-layer tape after the plasma treatment was studied. The results showed that the plasma etching effect increased the root mean square roughness of the PET surface from 1.74 nm to 19.10 nm. In addition, after the plasma treatment, the number of C&ndash;OH/COOH bonds and O=C&ndash;O bonds increased, which also greatly improved the adhesion between the PET and energetic polymers. In the optimization of the ablation performance, the optimal laser pulse width was about 200 &mu;s. The optimal values of the specific impulse (Isp), impulse coupling coefficient (Cm), and ablation efficiency (&eta;) were 390.65 s, 250.82 &mu;N/W, and 48.01%, respectively. The optimization of the adhesion of the double-layer tape and the ablation performance lay the foundation for the engineering application of laser ablation micro-thrusters

    Community Structure and Succession Regulation of Fungal Consortia in the Lignocellulose-Degrading Process on Natural Biomass

    Get PDF
    The study aims to investigate fungal community structures and dynamic changes in forest soil lignocellulose-degrading process. rRNA gene clone libraries for the samples collected in different stages of lignocellulose degradation process were constructed and analyzed. A total of 26 representative RFLP types were obtained from original soil clone library, including Mucoromycotina (29.5%), unclassified Zygomycetes (33.5%), Ascomycota (32.4%), and Basidiomycota (4.6%). When soil accumulated with natural lignocellulose, 16 RFLP types were identified from 8-day clone library, including Basidiomycota (62.5%), Ascomycota (36.1%), and Fungi incertae sedis (1.4%). After enrichment for 15 days, identified 11 RFLP types were placed in 3 fungal groups: Basidiomycota (86.9%), Ascomycota (11.5%), and Fungi incertae sedis (1.6%). The results showed richer, more diversity and abundance fungal groups in original forest soil. With the degradation of lignocellulose, fungal groups Mucoromycotina and Ascomycota decreased gradually, and wood-rotting fungi Basidiomycota increased and replaced the opportunist fungi to become predominant group. Most of the fungal clones identified in sample were related to the reported lignocellulose-decomposing strains. Understanding of the microbial community structure and dynamic change during natural lignocellulose-degrading process will provide us with an idea and a basis to construct available commercial lignocellulosic enzymes or microbial complex
    corecore