24 research outputs found
AnchorWave: Sensitive alignment of genomes with high sequence diversity, extensive structural polymorphism, and whole-genome duplication
Millions of species are currently being sequenced, and their genomes are being compared. Many of them have more complex genomes than model systems and raise novel challenges for genome alignment. Widely used local alignment strategies often produce limited or incongruous results when applied to genomes with dispersed repeats, long indels, and highly diverse sequences. Moreover, alignment using many-to-many or reciprocal best hit approaches conflicts with well-studied patterns between species with different rounds of whole-genome duplication. Here, we introduce Anchored Wavefront alignment (AnchorWave), which performs whole-genome duplication–informed collinear anchor identification between genomes and performs base pair–resolved global alignment for collinear blocks using a two-piece affine gap cost strategy. This strategy enables AnchorWave to precisely identify multikilobase indels generated by transposable element (TE) presence/absence variants (PAVs). When aligning two maize genomes, AnchorWave successfully recalled 87% of previously reported TE PAVs. By contrast, other genome alignment tools showed low power for TE PAV recall. AnchorWave precisely aligns up to three times more of the genome as position matches or indels than the closest competitive approach when comparing diverse genomes. Moreover, AnchorWave recalls transcription factor–binding sites at a rate of 1.05- to 74.85-fold higher than other tools with significantly lower false-positive alignments. AnchorWave complements available genome alignment tools by showing obvious improvement when applied to genomes with dispersed repeats, active TEs, high sequence diversity, and whole-genome duplication variation.This project is supported by the United States Department of Agriculture Agricultural Research Service, NSF No. 1822330, NSF No. 1854828, the European Union's Horizon 2020 Framework Programme under the DeepHealth project [825111], the European Union Regional Development Fund within the framework of The European Regional Development Fund Operational Program of Catalonia 2014 to 2020 with a grant of 50% of total cost eligible under the DRAC project [001-P-001723], and National Natural Science Foundation of China No. 31900486. M.C.S. was supported by NSF Postdoctoral Research Fellowship in Biology No. 1907343. M.M. was partially supported by the Spanish Ministry of Economy, Industry, and Competitiveness under Ramón y Cajal (RYC) fellowship number RYC-2016-21104.Peer ReviewedPostprint (published version
A role for heritable transcriptomic variation in maize adaptation to temperate environments
Background: Transcription bridges genetic information and phenotypes. Here, we evaluated how changes in transcriptional regulation enable maize (Zea mays), a crop originally domesticated in the tropics, to adapt to temperate environments.
Result: We generated 572 unique RNA-seq datasets from the roots of 340 maize genotypes. Genes involved in core processes such as cell division, chromosome organization and cytoskeleton organization showed lower heritability of gene expression, while genes involved in anti-oxidation activity exhibited higher expression heritability. An expression genome-wide association study (eGWAS) identified 19,602 expression quantitative trait loci (eQTLs) associated with the expression of 11,444 genes. A GWAS for alternative splicing identified 49,897 splicing QTLs (sQTLs) for 7614 genes. Genes harboring both cis-eQTLs and cis-sQTLs in linkage disequilibrium were disproportionately likely to encode transcription factors or were annotated as responding to one or more stresses. Independent component analysis of gene expression data identified loci regulating co-expression modules involved in oxidation reduction, response to water deprivation, plastid biogenesis, protein biogenesis, and plant-pathogen interaction. Several genes involved in cell proliferation, flower development, DNA replication, and gene silencing showed lower gene expression variation explained by genetic factors between temperate and tropical maize lines. A GWAS of 27 previously published phenotypes identified several candidate genes overlapping with genomic intervals showing signatures of selection during adaptation to temperate environments.
Conclusion: Our results illustrate how maize transcriptional regulatory networks enable changes in transcriptional regulation to adapt to temperate regions
A role for heritable transcriptomic variation in maize adaptation to temperate environments
Background: Transcription bridges genetic information and phenotypes. Here, we evaluated how changes in transcriptional regulation enable maize (Zea mays), a crop originally domesticated in the tropics, to adapt to temperate environments.
Result: We generated 572 unique RNA-seq datasets from the roots of 340 maize genotypes. Genes involved in core processes such as cell division, chromosome organization and cytoskeleton organization showed lower heritability of gene expression, while genes involved in anti-oxidation activity exhibited higher expression heritability. An expression genome-wide association study (eGWAS) identified 19,602 expression quantitative trait loci (eQTLs) associated with the expression of 11,444 genes. A GWAS for alternative splicing identified 49,897 splicing QTLs (sQTLs) for 7614 genes. Genes harboring both cis-eQTLs and cis-sQTLs in linkage disequilibrium were disproportionately likely to encode transcription factors or were annotated as responding to one or more stresses. Independent component analysis of gene expression data identified loci regulating co-expression modules involved in oxidation reduction, response to water deprivation, plastid biogenesis, protein biogenesis, and plant-pathogen interaction. Several genes involved in cell proliferation, flower development, DNA replication, and gene silencing showed lower gene expression variation explained by genetic factors between temperate and tropical maize lines. A GWAS of 27 previously published phenotypes identified several candidate genes overlapping with genomic intervals showing signatures of selection during adaptation to temperate environments.
Conclusion: Our results illustrate how maize transcriptional regulatory networks enable changes in transcriptional regulation to adapt to temperate regions