179 research outputs found

    Carbon Nanocone: A Promising Thermal Rectifier

    Full text link
    With molecular dynamics simulations, we demonstrate very obvious thermal rectification in large temperature range from 200 to 400 K in nanocone. We also observe that the rectification of nanocone does not depend on the length very sensitively, which is in stark contrast with the nanotube thermal rectifier in which the rectification decreases dramatically as the length increases. Our work demonstrates that carbon nanocone is a promising practical phononic device

    Thermal Rectification In Asymmetric Graphene Ribbons

    Full text link
    In this paper, heat flux in graphene nano ribbons has been studied by using molecular dynamics simulations. It is found that the heat flux runs preferentially along the direction of decreasing width, which demonstrates significant thermal rectification effect in the asymmetric graphene ribbons. The dependence of rectification ratio on the vertex angle and the length are also discussed. Compared to the carbon nanotube based one-dimensional thermal rectifier, graphene nano ribbons have much higher rectification ratio even in large scale. Our results demonstrate that asymmetric graphene ribbon might be a promising structure for practical thermal (phononics) device

    A Universal Gauge for Thermal Conductivity of Silicon Nanowires With Different Cross Sectional Geometries

    Full text link
    By using molecular dynamics simulations, we study thermal conductivity of silicon nanowires (SiNWs) with different cross sectional geometries. It is found that thermal conductivity decreases monotonically with the increase of surface-to-volume ratio (SVR). More interestingly, a simple universal linear dependence of thermal conductivity on SVR is observed for SiNWs with modest cross sectional area (larger than 20 nm^2), regardless of the cross sectional geometry. As a result, among different shaped SiNWs with the same cross sectional area, the one with triangular cross section has the lowest thermal conductivity. Our study provides not only a universal gauge for thermal conductivity among different cross sectional geometries, but also a designing guidance to tune thermal conductivity by geometry.Comment: 22 pages, 6 figure

    Ballistic magneto-thermal transport in a Heisenberg spin chain at low temperatures

    Full text link
    We study ballistic thermal transport in Heisenberg spin chain with nearest-neighbor ferromagnetic interactions at low temperatures. Explicit expressions for transmission coefficients are derived for thermal transport in a periodic spin chain of arbitrary junction length by a spin-wave model. Our analytical results agree very well with the ones from nonequilibrium Green's function method. Our study shows that the transmission coefficient oscillates with the frequency of thermal wave. Moreover, the thermal transmission shows strong dependence on the intrachain coupling, the length of the spin chain, and the external magnetic field. The results demonstrate the possibility of manipulating spin-wave propagation and magnetothermal conductance in the spin-chain junction by adjusting the intrachain coupling and/or the external magnetic field.Comment: 6 pages, 7 figure

    Molecular Dynamics Simulations of Heat Conduction in Nanostructures: Effect of Heat Bath

    Full text link
    We investigate systematically the impacts of heat bath used in molecular dynamics simulations on heat conduction in nanostructures exemplified by Silicon Nanowires (SiNWs) and Silicon/Germanium nano junction. It is found that multiple layers of Nos\'e-Hoover heat bath are required to reduce the temperature jump at the boundary, while only a single layer of Langevin heat bath is sufficient to generate a linear temperature profile with small boundary temperature jump. Moreover, an intermediate value of heat bath parameter is recommended for both Nos\'e-Hoover and Langevin heat bath in order to achieve correct temperature profile and thermal conductivity in homogeneous materials. Furthermore, the thermal rectification ratio in Si/Ge thermal diode depends on the choice of Nos\'e-Hoover heat bath parameter remarkably, which may lead to non-physical results. In contrast, Langevin heat bath is recommended because it can produce consistent results with experiment in large heat bath parameter range.Comment: 18 pages, 4 figures. This manuscript is accepted for publication in JPS
    corecore