34 research outputs found

    Gamma globulin binding of hinokiflavone with anti-osteoporosis effects: A mechanistic study

    No full text
    Oxidative stress can trigger apoptosis and associated reduction of osteoblast activity. Hinokiflavone (HNK) with a biflavonoid-based structure might show potent antioxidant activity. However, before the application of this compound as a promising therapeutic bioactive material, its interaction with blood proteins should be investigated to further reveal its pharmacokinetic and pharmacodynamic properties. Therefore, in this paper, the interaction of HNK with γ-globulin, one of the main blood proteins, was assessed. Then, the antioxidant properties of HNK against H2O2-induced osteoblast cytotoxicity in MC3T3-E1 cells were assessed. It was shown that HNK can potentially bind to γ-globulin mostly with the aid of hydrophilic forces, with a slight effect on the protein structure. It was then determined that HNK significantly recovered cell survival and alkaline phosphatase (ALP) activity and collagen-I content in MC3T3-E1 cells exposed to H2O2. In addition, HNK decreased the production of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) in MC3T3-E1 cells triggered by H2O2. Finally, HNK was shown to control the apoptosis induction in MC3T3-E1 cells triggered by H2O2 mediated by regulation of Bax, Bcl-2 and caspase-3. Taken together, these data demonstrated that HNK with promising blood protein binding properties can show significant protective effects in MC3T3-E1 cells mediated by inhibition of osteoblast dysfunction, oxidative stress, and apoptosis

    ACDF vs TDR for patients with cervical spondylosis – an 8 year follow up study

    No full text
    Abstract Background ACDF has been considered as the gold standard in the treatment of single level cervical disk protrusion. However, it may cause adjacent level degeneration due to regional biomechanical changes. TDR has been applied with satisfactory results for over a decade, but there is no consensus if TDR is safer and more efficient than ACDF. The current study was carried out to compare the efficiency and safety of TDR and ACDF in the treatment of patients with single level cervical disk protrusion. Methods One hundred forty-five consecutive patients who underwent either TDR or ACDF in our center were included in the current study. Time of surgery, intraoperative blood loss, VAS arm and neck pain scores, ROM, ODI, SF36 and Patient satisfaction were compared before the surgery, after the surgery, and during follow up 1, 3, 5, 8 years after the surgery. Results The time of surgery was 64.6 ± 20.7 min in the ACDF group and 69.4 ± 19.3 min in the TDR group; intraoperative hemorrhage was 67.2 ± 14.3 ml in ACDF group and 70.7 ± 18.6 ml in TDR group. There were no significant differences between two groups concerning time of surgery and intraoperative blood loss. No differences were found concerning patient satisfaction between the two groups during the follow up (P > 0.05). Significant differences were found between the groups concerning VAS arm and neck pain scores, ROM, ODI and SF36 after the surgery and during the 8 year follow up. Conclusion TDR may be a more effective approach than ACDF for treating patients with single level cervical disk protrusion. Keywords Cervical disk herniation, ACDF, TDR, Retrospective stud

    L-Lysine-grafted graphene oxide as an effective adsorbent for the removal of methylene blue and metal ions

    No full text
    In this paper, novel L-lysine-modified graphene oxide (Lys-GO) was synthesized through amidation. The morphological and structural properties of Lys-GO were characterized using infrared spectrometry, scanning electronic microscopy and X-ray photoelectron spectroscopy. The as-prepared Lys-GO material was systematically investigated in a series of batch adsorption experiments for the removal of methylene blue (MB) and copper ions (Cu2+) from wastewater. These results showed that Lys-GO is a bifunctional adsorbent for the removal of dyes and metal ions, and excellent adsorption efficiency was obtained. The maximum adsorption capacities for MB dye and Cu2+ were 1679.1 mg/g and 186.9 mg/g at 35 °C, respectively. The kinetics of adsorption followed well the linear pseudo-second-kinetic model. The isotherm results indicated that MB adsorption can be described with the Langmuir isotherm model, while the adsorption of Cu2+ can be described with the Freundlich model. The excellent adsorption capacity indicated that the Lys-GO may be a promising adsorption material for the removal of environmental pollutants

    Summary of the Corrosion Status and Protection Measures of Marine Steel Structure in China

    No full text
    Steel structure materials are widely used in the field of marine engineering because of their excellent mechanical processing properties. However, due to the complexity of marine corrosion environment, the corrosion of ordinary steel structures has become a serious threat to marine economic development under the coupling actions of temperature, oxygen, salt, marine microorganism and other factors. In this paper, the corrosion types of steel structures in the ocean and the existing corrosion protection measures were briefly summarized and analyzed, and the frontier technology of marine steel structure protection was prospected

    Factors for Predicting Instant Neurological Recovery of Patients with Motor Complete Traumatic Spinal Cord Injury

    No full text
    The objective of this study was to analyze the factors affecting the instant recovery of neurological function in patients with motor complete traumatic spinal cord injury (TSCI) treated in hospital. Methods: A retrospective analysis of 1053 patients with TSCI classified according to the American Spinal Cord Injury Association (ASIA) as grades A and B at 59 tertiary hospitals from 1 January 2018 to 31 December 2018 was performed. All patients were classified into motor complete injury (ASIA A or B) and motor incomplete injury (ASIA C or D) groups, according to the ASIA upon discharge. The injury level, fracture segment, fracture type, ASIA score at admission and discharge, treatment protocol, and complications were recorded. Univariate and multivariate analyses were performed to evaluate the relationship between various factors and the recovery of neurological function. Results: The results of multiple logistic regression analysis revealed that the ASIA score on admission (p < 0.001, odds ratio (OR) = 5.722, 95% confidence interval (CI): 4.147–7.895), fracture or dislocation (p = 0.001, OR = 0.523, 95% CI: 0.357–0.767), treatment protocol (p < 0.001; OR = 2.664, 95% CI: 1.689–4.203), and inpatient rehabilitation (p < 0.001, OR = 2.089, 95% CI: 1.501–2.909) were independently associated with the recovery of neurological function. Conclusion: The recovery of neurological function is dependent on the ASIA score on admission, fracture or dislocation, treatment protocol, and inpatient rehabilitation

    National Clinical Skills Competition: an effective simulation-based method to improve undergraduate medical education in China

    No full text
    Background: The National Clinical Skills Competition has been held in China for 5 consecutive years since 2010 to promote undergraduate education reform and improve the teaching quality. The effects of the simulation-based competition will be analyzed in this study. Methods: Participation in the competitions and the compilation of the questions used in the competition finals are summarized, and the influence and guidance quality are further analyzed. Through the nationwide distribution of questionnaires in medical colleges, the effects of the simulation-based competition on promoting undergraduate medical education reform were evaluated. Results: The results show that approximately 450 students from more than 110 colleges (accounting for 81% of colleges providing undergraduate clinical medical education in China) participated in the competition each year. The knowledge, skills, and attitudes were comprehensively evaluated by simulation-based assessment. Eight hundred and eighty copies of the questionnaires were distributed to 110 participating medical schools in 2015. In total, 752 valid responses were received across 95 schools. The majority of the interviewees agreed or strongly agreed that competition promoted the adoption of advanced educational principles (76.8%), updated the curriculum model and instructional methods (79.8%), strengthened faculty development (84.0%), improved educational resources (82.1%), and benefited all students (53.4%). Conclusions: The National Clinical Skills Competition is widely accepted in China. It has effectively promoted the reform and development of undergraduate medical education in China

    Anti-Tumor Effects of an Oncolytic Adenovirus Expressing Hemagglutinin-Neuraminidase of Newcastle Disease Virus in Vitro and in Vivo

    No full text
    Oncolytic virotherapy has been an attractive drug platform for targeted therapy of cancer over the past few years. Viral vectors can be used to target and lyse cancer cells, but achieving good efficacy and specificity with this treatment approach is a major challenge. Here, we assessed the ability of a novel dual-specific anti-tumor oncolytic adenovirus, expressing the hemagglutinin-neuraminidase (HN) gene from the Newcastle disease virus under the human telomerase reverse transcriptase (hTERT) promoter (Ad-hTERTp-E1a-HN), to inhibit esophageal cancer EC-109 cells in culture and to reduce tumor burden in xenografted BALB/c nude mice. In vitro, infection with Ad-hTERT-E1a-HN could inhibit the growth of EC-109 cells significantly and also protect normal human liver cell line L02 from growth suppression in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Ad-hTERT-E1a-HN also effectively and selectively decreased the sialic acid level on EC-109 cells, but not on L02 cells. Furthermore, Ad-hTERT-E1a-HN was shown to induce the apoptosis pathway via acridine orange and ethidium bromide staining (AO/EB staining), increase reactive oxygen species (ROS), reduce mitochondrial membrane potential and release cytochrome c. In vivo, xenografted BALB/c nude mice were treated via intratumoral or intravenous injections of Ad-hTERT-E1a-HN. Although both treatments showed an obvious suppression in tumor volume, only Ad-hTERT-E1a-HN delivered via intratumoral injection elicited a complete response to treatment. These results reinforced previous findings and highlighted the potential therapeutic application of Ad-hTERT-E1a-HN for treatment of esophageal cancer in clinical trials

    Exploring the therapeutic potential of isoorientin in the treatment of osteoporosis: a study using network pharmacology and experimental validation

    No full text
    Abstract Background Isoorientin (ISO) is a glycosylated flavonoid with antitumor, anti-inflammatory, and antioxidant properties. However, its effects on bone metabolism remain largely unknown. Methods In this study, we aimed to investigate the effects of ISO on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation in vitro and bone loss in post-ovariectomy (OVX) rats, as well as to elucidate the underlying mechanism. First, network pharmacology analysis indicated that MAPK1 and AKT1 may be potential therapeutic targets of ISO and that ISO has potential regulatory effects on the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathways, as well as oxidative stress. ISO was added to RAW264.7 cells stimulated by RANKL, and its effects on osteoclast differentiation were evaluated using tartrate‐resistant acid phosphatase (TRAP) staining, TRAP activity measurement, and F-actin ring analysis. Reactive oxygen species (ROS) production in osteoclasts was detected using a ROS assay kit. The effects of ISO on RANKL-triggered molecular cascade response were further investigated by Western blotting, quantitative real-time polymerase chain reaction, and immunofluorescence staining. In addition, the therapeutic effects of ISO were evaluated in vivo. Results ISO inhibited osteoclastogenesis in a time- and concentration-dependent manner. Mechanistically, ISO downregulated the expression of the main transcription factor for osteoclast differentiation by inhibiting MAPK and PI3K/AKT1 signaling pathways. Moreover, ISO exhibited protective effects in OVX-induced bone loss rats. This was consistent with the results derived from network pharmacology. Conclusion Our findings suggest a potential therapeutic utility of ISO in the management of osteoclast-associated bone diseases, including osteoporosis
    corecore