9 research outputs found
Tuberous Sclerosis complex protein 2-independent activation of mTORC1 by human cytomegalovirus pUL38
The mammalian target of rapamycin complex 1 (mTORC1) controls cell growth and anabolic metabolism and is a critical host factor activated by human cytomegalovirus (HCMV) for successful infection. The multifunctional HCMV protein pUL38 previously has been reported to activate mTORC1 by binding to and antagonizing tuberous sclerosis complex protein 2 (TSC2) (J. N. Moorman et al., Cell Host Microbe 3:253β262, 2008, http://dx.doi.org/10.1016/j.chom.2008.03.002). pUL38 also plays a role in blocking endoplasmic reticulum stress-induced cell death during HCMV infection. In this study, we showed that a mutant pUL38 lacking the N-terminal 24 amino acids (pHA-UL38(25β331)) was fully functional in suppressing cell death during infection. Interestingly, pHA-UL38(25β331) lost the ability to interact with TSC2 but retained the ability to activate mTORC1, although to a lesser extent than full-length pHA-UL38. Recombinant virus expressing pHA-UL38(25β331) replicated with βΌ10-fold less efficiency than the wild-type virus at a low multiplicity of infection (MOI), but it grew similarly well at a high MOI, suggesting an MOI-dependent importance of pUL38-TSC2 interaction in supporting virus propagation. Site-directed mutational analysis identified a TQ motif at amino acid residues 23 and 24 as critical for pUL38 interaction with TSC2. Importantly, when expressed in isolation, the TQ/AA substitution mutant pHA-UL38 TQ/AA was capable of activating mTORC1 just like pHA-UL38(25β331). We also created TSC2-null U373-MG cell lines by CRISPR genome editing and showed that pUL38 was capable of further increasing mTORC1 activity in TSC2-null cells. Therefore, this study identified the residues important for pUL38-TSC2 interaction and demonstrated that pUL38 can activate mTORC1 in both TSC2-dependent and -independent manners. IMPORTANCE HCMV, like other viruses, depends exclusively on its host cell to propagate. Therefore, it has developed methods to protect against host stress responses and to usurp cellular processes to complete its life cycle. mTORC1 is believed to be important for virus replication, and HCMV maintains high mTORC1 activity despite the stressful cellular environment associated with infection. mTORC1 inhibitors suppressed HCMV replication in vitro and reduced the incidence of HCMV reactivation in transplant recipients. We demonstrated that mTORC1 was activated by HCMV protein pUL38 in both TSC2-dependent and TSC2-independent manners. The pUL38-independent mode of mTORC1 activation also has been reported. These novel findings suggest the evolution of sophisticated approaches whereby HCMV activates mTORC1, indicating its importance in the biology and pathogenesis of HCMV
Human Cytomegalovirus Protein pUL117 Targets the Mini-Chromosome Maintenance Complex and Suppresses Cellular DNA Synthesis
Modulation of host DNA synthesis is essential for many viruses to establish productive infections and contributes to viral diseases. Human cytomegalovirus (HCMV), a large DNA virus, blocks host DNA synthesis and deregulates cell cycle progression. We report that pUL117, a viral protein that we recently identified, is required for HCMV to block host DNA synthesis. Mutant viruses in which pUL117 was disrupted, either by frame-shift mutation or by a protein destabilization-based approach, failed to block host DNA synthesis at times after 24 hours post infection in human foreskin fibroblasts. Furthermore, pUL117-deficient virus stimulated quiescent fibroblasts to enter S-phase, demonstrating the intrinsic ability of HCMV to promote host DNA synthesis, which was suppressed by pUL117. We examined key proteins known to be involved in inhibition of host DNA synthesis in HCMV infection, and found that many were unlikely involved in the inhibitory activity of pUL117, including geminin, cyclin A, and viral protein IE2, based on their expression patterns. However, the ability of HCMV to delay the accumulation of the mini-chromosome maintenance (MCM) complex proteins, represented by MCM2 and MCM4, and prevent their loading onto chromatin, was compromised in the absence of pUL117. When expressed alone, pUL117 slowed cell proliferation, delayed DNA synthesis, and inhibited MCM accumulation. Knockdown of MCM proteins by siRNA restored the ability of pUL117-deficient virus to block cellular DNA synthesis. Thus, targeting MCM complex is one mechanism pUL117 employs to help block cellular DNA synthesis during HCMV infection. Our finding substantiates an emerging picture that deregulation of MCM is a conserved strategy for many viruses to prevent host DNA synthesis and helps to elucidate the complex strategy used by a large DNA virus to modulate cellular processes to promote infection and pathogenesis
Human cytomegalovirus exploits interferon-induced transmembrane proteins to facilitate morphogenesis of the virion assembly compartment
Recently, interferon-induced transmembrane proteins (IFITMs) have been identified to be key effector molecules in the host type I interferon defense system. The invasion of host cells by a large range of RNA viruses is inhibited by IFITMs during the entry step. However, the roles of IFITMs in DNA virus infections have not been studied in detail. In this study, we report that human cytomegalovirus (HCMV), a large human DNA virus, exploits IFITMs to facilitate the formation of the virion assembly compartment (vAC) during infection of human fibroblasts. We found that IFITMs were expressed constitutively in human embryonic lung fibroblasts (MRC5 cells). HCMV infection inhibited IFITM protein accumulation in the later stages of infection. Overexpression of an IFITM protein in MRC5 cells slightly enhanced HCMV production and knockdown of IFITMs by RNA interference reduced the virus titer by about 100-fold on day 8 postinfection, according to the findings of a virus yield assay at a low multiplicity of infection. Virus gene expression and DNA synthesis were not affected, but the typical round structure of the vAC was not formed after the suppression of IFITMs, thereby resulting in defective virion assembly and the production of less infectious virion particles. Interestingly, the replication of herpes simplex virus, a human herpesvirus that is closely related to HCMV, was not affected by the suppression of IFITMs in MRC5 cells. These results indicate that IFITMs are involved in a specific pathway required for HCMV replication. IMPORTANCE HCMV is known to repurpose the interferon-stimulated genes (ISGs) viperin and tetherin to facilitate its replication. Our results expand the range of ISGs that can be exploited by HCMV for its replication. This is also the first report of a proviral function of IFITMs in DNA virus replication. In addition, whereas previous studies showed that IFITMs modulate virus entry, which is a very early stage in the virus life cycle, we identified a new function of IFITMs during the very late stage of virus replication, i.e., virion assembly. Virus entry and assembly both involve vesicle transport and membrane fusion; thus, a common biochemical activity of IFITMs is likely to be involved. Therefore, our findings may provide a new platform for dissecting the molecular mechanism of action of IFITMs during the blocking or enhancement of virus infection, which are under intense investigation in this field
Identification and investigation of depression-related molecular subtypes in inflammatory bowel disease and the anti-inflammatory mechanisms of paroxetine
BackgroundUp to 40 per cent of people with active inflammatory bowel disease (IBD) also suffer from mood disorders such as anxiety and depression. Notwithstanding, the fundamental biological pathways driving depression in IBD remain unknown.MethodsWe identified 33 core genes that drive depression in IBD patients and performed consensus molecular subtyping with the NMF algorithm in IBD. The CIBERSORT were employed to quantify the immune cells. Metabolic signature was characterized using the βIOBRβ R package. The scoring system (D. score) based on PCA. Pre-clinical models are constructed using DSS.ResultsUsing transcriptome data from the GEO database of 630 IBD patients, we performed a thorough analysis of the correlation between IBD and depression in this research. Firstly, the samples were separated into two different molecular subtypes (D. cluster1 and D. cluster2) based on their biological signatures. Moreover, the immunological and metabolic differences between them were evaluated, and we discovered that D. cluster2 most closely resembled IBD patients concomitant with depression. We also developed a scoring system to assess the IBD-related depression and predict clinical response to anti-TNF- therapy, with a higher D. score suggesting more inflammation and worse reaction to biological therapies. Ultimately, we also identified through animal experiments an antidepressant, paroxetine, has the added benefit of lowering intestinal inflammation by controlling microorganisms in the digestive tract.ConclusionsThis study highlights that IBD patients with or without depression show significant variations and antidepressant paroxetine may help reduce intestinal inflammation
Human Cytomegalovirus Protein pUL38 Induces ATF4 Expression, Inhibits Persistent JNK Phosphorylation, and Suppresses Endoplasmic Reticulum Stress-Induced Cell DeathβΏ
The endoplasmic reticulum (ER) is a key organelle involved in sensing and responding to stressful conditions, including those resulting from infection of viruses, such as human cytomegalovirus (HCMV). Three signaling pathways collectively termed the unfolded protein response (UPR) are activated to resolve ER stress, but they will also lead to cell death if the stress cannot be alleviated. HCMV is able to modulate the UPR to promote its infection. The specific viral factors involved in such HCMV-mediated modulation, however, were unknown. We previously showed that HCMV protein pUL38 was required to maintain the viability of infected cells, and it blocked cell death induced by thapsigargin. Here, we report that pUL38 is an HCMV-encoded regulator to modulate the UPR. In infection, pUL38 allowed HCMV to upregulate phosphorylation of PKR-like ER kinase (PERK) and the Ξ± subunit of eukaryotic initiation factor 2 (eIF-2Ξ±), as well as induce robust accumulation of activating transcriptional factor 4 (ATF4), key components of the PERK pathway. pUL38 also allowed the virus to suppress persistent phosphorylation of c-Jun N-terminal kinase (JNK), which was induced by the inositol-requiring enzyme 1 pathway. In isolation, pUL38 overexpression elevated eIF-2Ξ± phosphorylation, induced ATF4 accumulation, limited JNK phosphorylation, and suppressed cell death induced by both thapsigargin and tunicamycin, two drugs that induce ER stress by different mechanisms. Importantly, ATF4 overexpression and JNK inhibition significantly reduced cell death in pUL38-deficient virus infection. Thus, pUL38 targets ATF4 expression and JNK activation, and this activity appears to be critical for protecting cells from ER stress induced by HCMV infection
The Full-Length Protein Encoded by Human Cytomegalovirus Gene UL117 Is Required for the Proper Maturation of Viral Replication CompartmentsβΏ
Previously, two large-scale mutagenic analyses showed that mutations in the human cytomegalovirus (HCMV) gene UL117 resulted in a defect in virus growth in fibroblasts. Early transcriptional analyses have revealed several mRNAs from the UL119-UL115 region; however, specific transcripts encoding UL117-related proteins have not been identified. In this study, we identified two novel transcripts arising from the UL117 gene locus, and we reported that the UL117 open reading frame encoded the full-length protein pUL117 (45 kDa) and the shorter isoform pUL117.5 (35 kDa) as the result of translation initiation at alternative in-frame ATGs. Both proteins were expressed with early kinetics, but pUL117 accumulated at a lower abundance relative to that of pUL117.5. During HCMV infection, both proteins localized predominantly to the nucleus, and the major fraction of pUL117 localized in viral nuclear replication compartments. We constructed mutant HCMV viruses in which the entire UL117 coding sequence was deleted or the expression of pUL117 was specifically abrogated. The growth of mutant viruses was significantly attenuated, indicating that pUL117 was required for efficient virus infection in fibroblasts. Cells infected with the pUL117-deficient mutant virus accumulated representative viral immediate-early proteins and early proteins normally. In the absence of pUL117, the accumulation of replicating viral DNA was reduced by no more than twofold at early times and was indistinguishable from that of the wild type at 72 h postinfection. Strikingly, there was a 12- to 24-h delay in the development of nuclear replication compartments and a marked delay in the expression of late viral proteins. We conclude that pUL117 acts to promote the development of nuclear replication compartments to facilitate viral growth