165 research outputs found

    From the Guest Editors: Special issue dedicated to Carlos Castillo-Chavez on his 60th birthday

    Get PDF
    Carlos Castilo-Chavez is a Regents Professor, a Joaquin Bustoz Jr. Professor of Mathematical Biology, and a Distinguished Sustainability Scientist at Arizona State University. His research program is at the interface of the mathematical and natural and social sciences with emphasis on (i) the role of dynamic social landscapes on disease dispersal; (ii) the role of environmental and social structures on the dynamics of addiction and disease evolution, and (iii) Dynamics of complex systems at the interphase of ecology, epidemiology and the social sciences. Castillo-Chavez has co-authored over two hundred publications (see goggle scholar citations) that include journal articles and edited research volumes. Specifically, he co-authored a textbook in Mathematical Biology in 2001 (second edition in 2012); a volume (with Harvey Thomas Banks) on the use of mathematical models in homeland security published in SIAM\u27s Frontiers in Applied Mathematics Series (2003); and co-edited volumes in the Series Contemporary Mathematics entitled ``Mathematical Studies on Human Disease Dynamics: Emerging Paradigms and Challenges\u27\u27 (American Mathematical Society, 2006) and Mathematical and Statistical Estimation Approaches in Epidemiology (Springer-Verlag, 2009) highlighting his interests in the applications of mathematics in emerging and re-emerging diseases. Castillo-Chavez is a member of the Santa Fe Institute\u27s external faculty, adjunct professor at Cornell University, and contributor, as a member of the Steering Committee of the ``Committee for the Review of the Evaluation Data on the Effectiveness of NSF-Supported and Commercially Generated Mathematics Curriculum Materials,\u27\u27 to a 2004 NRC report. The CBMS workshop ``Mathematical Epidemiology with Applications\u27\u27 lectures delivered by C. Castillo-Chavez and F. Brauer in 2011 have been published by SIAM in 2013

    Transport And Plugging Performance Evaluation Of A Novel Re-Crosslinkable Microgel Used For Conformance Control In Mature Oilfields With Super-Permeable Channels

    Get PDF
    Preformed particle gels (PPG) have been widely applied in oilfields to control excessive water production. However, PPG has limited success in treating opening features because the particles can be flushed readily during post-water flooding. We have developed a novel micro-sized Re-crosslinkable PPG (micro-RPPG) to solve the problem. The microgel can re-crosslink to form a bulk gel, avoiding being washed out easily. This paper evaluates the novel microgels\u27 transport and plugging performance through super-permeable channels. Micro-RPPG was synthesized and evaluated for this study. Its storage moduli after fully swelling are approximately 82 Pa. The microgel characterization, self-healing process, transportation behavior, and plugging performance were investigated. A sandpack model with multi-pressure taps was utilized to assess the microgel dispersions\u27 transport behavior and plugging efficiency. In addition, micro-optical visualization of the gel particles was deployed to study the particle size changes before and after the swelling process. Tube tests showed that micro-RPPG could be dispersed and remain as separate particles in water with a concentration below 8,000 ppm, which is a favorable concentration for gel treatment. However, during the flooding test, the amount of microgel can be entrapped in the sandpack, resulting in a higher microgel concentration (higher than 8,000 ppm), endowing the gel particles with re-crosslinking ability even with excessive water. The microgel could propagate through the sandpack model, and the required pressure gradient mainly depends on the average particle/pore ratio and gel concentration. The gel dispersion significantly reduced channel permeability, providing sufficient resistance to post-water flooding (more than 99.97 % permeability reduction). In addition, the evaluation of micro-RPPG retention revealed that it is primarily affected by both gel concentration particle/pore ratios. We have demonstrated that the novel recrosslinkable microgel can transport through large channels, but it can provide effective plugging due to its unique re-crosslinking property. However, by this property, the new microgel exhibits enhanced stability and demonstrates resistance to being flushed out in such high-permeability environments. Furthermore, with the help of novel technology, it is possible to overcome the inherited problems commonly associated with in-situ gel treatments, including chromatographic issues, low-quality control, and shearing degradation

    Lysine Crosslinked Polyacrylamide─A Novel Green Polymer Gel for Preferential Flow Control

    Get PDF
    Acrylamide-based polymer gels have been applied to control the preferential flow in the subsurface for decades. However, some commonly used crosslinkers, such as Cr (III) and phenol-formaldehyde, are highly toxic and are being phased out because of stringent environmental regulations. This work uses l-lysine as the green crosslinker to produce acrylamide-based polymer gels. This article systematically studied the effect of lysine and polymer concentration, salinity, pH, and temperature on gelation behavior and thermal stability. Besides, the gelation mechanism and crosslinking density were elucidated in this work. A high-permeability sandstone core was used to test the plugging efficiency of this novel green gel system. This polyacrylamide/lysine system has a controllable gelation time. It can form gels at temperatures higher than 80 °C, with the gelation time from hours to days, and the elastic modulus of the gel can reach over 400 Pa. In addition, the crosslinked gels have been stable at 80 to 130 °C for over 200 days. This novel gel system could decrease rock permeability by over 1000 times. Besides, the Frrw is two times higher than the Frro, confirming that the current gel system can reduce the permeability to water more than that to oil. As a green gel system, this novel polymer gel system could replace the current toxic gel systems for the preferential fluid control for water management projects in oil and gas reservoirs, enhanced geothermal systems, and carbon capture and sequestration projects

    A Novel Branched Polymer Gel System with Delayed Gelation Property for Conformance Control

    Get PDF
    Excessive water production from oil reservoirs not only affects the economical production of oil, but it also results in serious environmental concerns. Polymer gels have been widely applied to decrease water production and thus improve oil production. However, traditional polymer gels such as partially hydrolyzed polyacrylamide (HPAM)/chromium (III) gel systems usually have a short gelation time and cannot meet the requirement of some conformance control projects. This paper introduces a novel polymer gel system of which crosslinking time can be significantly delayed. A branched polymer grafted from arginine by the surface initiation method is synthesized as the backbone, chromium acetate is used as the crosslinker, and no additional additives are used for the gel system. The results show that the gelation time of this system can be delayed to 61 days at 45°C and 20 days at 65°C because of the rigid structure of the branched polymer and the excellent chromium (III) chelating ability of arginine. The polymer gels have been stable for more than 150 days at 45 and 65°C. Core flooding and rheology tests have demonstrated that this branched polymer has good injectivity and shear resistance in high-permeability rocks

    Surfactant Induced Reservoir Wettability Alteration: Recent Theoretical and Experimental Advances in Enhanced Oil Recovery

    Get PDF
    Reservoir wettability plays an important role in various oil recovery processes. The origin and evolution of reservoir wettability were critically reviewed to better understand the complexity of wettability due to interactions in crude oil-brine-rock system, with introduction of different wetting states and their influence on fluid distribution in pore spaces. The effect of wettability on oil recovery of waterflooding was then summarized from past and recent research to emphasize the importance of wettability in oil displacement by brine. The mechanism of wettability alteration by different surfactants in both carbonate and sandstone reservoirs was analyzed, concerning their distinct surface chemistry, and different interaction patterns of surfactants with components on rock surface. Other concerns such as the combined effect of wettability alteration and interfacial tension (IFT) reduction on the imbibition process was also taken into account. Generally, surfactant induced wettability alteration for enhanced oil recovery is still in the stage of laboratory investigation. The successful application of this technique relies on a comprehensive survey of target reservoir conditions, and could be expected especially in low permeability fractured reservoirs and forced imbibition process

    Laboratory Evaluation of a Novel Self-Healable Polymer Gel for CO2 Leakage Remediation during CO2 Storage and CO2 Flooding

    Get PDF
    For CO2 storage in subsurface reservoirs, one of the most crucial requirements is the ability to remediate the leakage caused by the natural fractures or newly generated fractures due to the increasing pore pressure associated with CO2 injection. For CO2 Enhanced Oil Recovery (EOR), high conductivity features such as fractures and void space conduits can severely restrict the CO2 sweep efficiency. Polymer gels have been developed to plug the leakage and improve the sweep efficiency. This work evaluated a CO2 resistant branched self-healable preformed particle gel (CO2-BRPPG) for CO2 plugging purpose. This novel CO2-BRPPG can reform a mechanical robust adhesive bulk gel after being placed in the reservoir and efficiently seal fractures. In this work, the swelling kinetics, self-healing behavior, thermal stability, CO2 stability, rheology, adhesion property and plugging performance of this novel CO2-BRPPG were studied in the laboratory. Results showed that this CO2-BRPPG has good self-healing abilities, and the self-healed bulk gel has excellent mechanical and adhesion strength. Gel with a swelling ratio of ten has an elastic modulus of over 2000 Pa, and the adhesion strength to sandstone is 1.16 psi. The CO2-BRPPG has good CO2 phase stability at 65 °C, and no dehydration was observed after 60 days of exposure to 2900 psi CO2 at 65 °C. Core flooding test proved that the swelled particles could reform a bulk gel after being placed in the fractures, and the reformed bulky gel has excellent CO2 plugging efficiency. The supercritical CO2 breakthrough pressure gradient was 265 psi/feet (5.48 MPa/m). This work could offer the experimental basis for the field application of this CO2-BRPPG in CO2 storage and CO2 enhanced oil recovery

    A Symmetric Intraguild Predation Model for the Invasive Lionfish and Native Grouper

    Get PDF
    Abstract Lionfish are top-level venomous predators native to the Indo-Pacific Ocean. Over the past decade, the species Pterois volitans and P. miles have become established throughout most of the western Atlantic Ocean, where they drastically impact coral reef communities. Overfishing of native species, such as grouper, who share their niche with lionfish may be the reason for the lionfish's success; research has suggested that at high density, groupers can act as a lionfish biocontrol. To determine if competition or predation is the mechanism behind lionfish suppression, we construct a symmetric intraguild predation model of lionfish, grouper, and prey. Thus, we assume lionfish and grouper compete for prey in addition to consuming juveniles of the other species. Holling type I functional responses are used to represent fecundity and predation. We conduct an equilibrium stability analysis and bifurcation analysis of the general model, and find that the system is able to coexist in an equilibrium or sustainable oscillations. After estimating parameter ranges, simulations and a sensitivity analysis indicate the parameters most influential to lionfish growth rate. The implied control strategies are then tested by varying harvesting and predation rates

    The Global Stability Analysis for an SIS Model with Age and Infection Age Structures

    Full text link
    27 pages, 1 article*The Global Stability Analysis for an SIS Model with Age and Infection Age Structures* (Zhou, Yicang; Song, Baojun; Ma, Zhien) 27 page

    Cross-species transmission of a novel bisegmented orfanplasmovirus in the phytopathogenic fungus Exserohilum rostratum

    Get PDF
    Mycoviruses have been found in various fungal species across different taxonomic groups, while no viruses have been reported yet in the fungus Exserohilum rostratum. In this study, a novel orfanplasmovirus, namely Exserohilum rostratum orfanplasmovirus 1 (ErOrfV1), was identified in the Exserohilum rostratum strain JZ1 from maize leaf. The complete genome of ErOrfV1 consists of two positive single-stranded RNA segments, encoding an RNA-dependent RNA polymerase and a hypothetical protein with unknown function, respectively. Phylogenetic analysis revealed that ErOrfV1 clusters with other orfanplasmoviruses, forming a distinct phyletic clade. A new family, Orfanplasmoviridae, is proposed to encompass this newly discovered ErOrfV1 and its associated orfanplasmoviruses. ErOrfV1 exhibits effective vertical transmission through conidia, as evidenced by its 100% presence in over 200 single conidium isolates. Moreover, it can be horizontally transmitted to Exserohilum turcicum. Additionally, the infection of ErOrfV1 is cryptic in E. turcicum because there were no significant differences in mycelial growth rate and colony morphology between ErOrfV1-infected and ErOrfV1-free strains. This study represents the inaugural report of a mycovirus in E. rostratum, as well as the first documentation of the biological and transmission characteristics of orfanplasmovirus. These discoveries significantly contribute to our understanding of orfanplasmovirus

    Molecular Packing Control Enables Excellent Performance and Mechanical Property of Blade-Cast All-Polymer Solar Cells

    Get PDF
    All-polymer solar cells (all-PSCs) are the most promising power generators for flexible and portable devices due to excellent morphology stability and outstanding mechanical property. Previous work indicates high crystallinity is beneficial to device performance but detrimental to mechanical property, therefore identifying the optimized ratio between crystalline and amorphous domains becomes important. In this work, we demonstrated highly efficient and mechanically robust all-PSCs by blade-coating technology in ambient environment based on PTzBI:N2200 system. By controlling the aggregation in solution state and ultrafast film formation process, a weakly ordered molecular packing morphology as well as small phase separation is obtained, which leads to not only the good photovoltaic performance (8.36%-one of the best blade-cast device in air) but also prominent mechanical characteristic. The controlled film shows a remarkable elongation with the crack onset strain of 15.6%, which is the highest result in organic solar cells without adding elastomers. These observations indicate the great promise of the developed all-PSCs for practical applications toward large-area processing technology
    • …
    corecore