136 research outputs found

    Predictive value of MRI-detected tumor deposits in locally advanced rectal cancer

    Get PDF
    BackgroundAlthough tumor deposits (TDs) are not the same as lymph nodes, the prognosis of patients with TDs is similar or worse than that of patients with metastatic lymph nodes. TDs are mostly assessed by the histology of samples after surgery, thus, not helpful for preoperative treatment strategies. The primary objective of this study was to detect TDs by MRI and evaluate its predictive value.Materials and methodsA total of 114 patients with rectal cancer were retrospectively analyzed. Clinicopathological and MRI data mainly including MRI- detected TDs (mTDs), tumor border configuration (TBC) on MRI, MRI-detected extramural vascular invasion (mEMVI), MRI-detected lymph node metastasis (mLN), MRI T stage, MRI N stage, the range of rectal wall involved by the tumor, peritoneal reflection invasion, tumor length, tumor location, cord sign at the tumor edge, nodular protrusion at the tumor edge, maximal extramural depth and pathology-proven lymph node involvement (pLN) were evaluated. The correlation of MRI factors with postoperative distant metastasis (PDM) and pLN were analyzed by univariate analysis and multivariate logistic regression analysis, and nomograms were established based on the latter. The diagnostic efficiency was evaluated by the receiver operating characteristic curve (ROC) and area under the curve (AUC).ResultsA total of 38 cases of pLN, 13 of PDM and 17 of pathology-proven TDs (pTDs) were found. Ten cases of PDM and 22 cases of pLN in 30 mTDs cases were also found. Chi-square test showed that mTDs, mLN, TBC, mEMVI, MRI T stage, nodular protrusion, cord sign, maximal extramural depth and peritoneal reflection invasion were correlated with PDM and pLN (P<0.05). mTDs and peritoneal reflection invasion were independent risk factors for PDM (odds ratio: 10.15 and 8.77, P<0.05), mTDs and mLN were independent risk factors for pLN (odds ratio: 5.50 and 5.91, P<0.05), and Hosmer-Lemeshow test showed that the results of two models were not statistically significant, suggesting that the fit was good. On this basis, two nomograms for predicting PDM and pLN were confirmed by Bootstrap self-sampling, and the C-indices of the two nomograms were 0.837 and 0.817, respectively. The calibration curves and ROC curves of the two nomograms showed that the correlation between the predicted and the actual incidence of PDM and pLN was good. The DeLong test showed that the predictive efficiency of the nomogram in predicting pLN was better than that of mLN (P=0.0129).ConclusionmTDs are a risk factor for PDM and lymph node metastasis. The two nomograms based on mTDs showed a good performance in predicting PDM and lymph node metastasis, possessing a certain clinical value

    Orexin-A protects against oxygen-glucose deprivation/reoxygenation-induced cell damage by inhibiting endoplasmic reticulum stress-mediated apoptosis via the Gi and PI3K signaling pathways

    Get PDF
    The neuropeptide orexin-A (OXA) has a neuroprotective effect, acting as an anti-apoptotic factor in response to multiple stimuli. Apoptosis induced by endoplasmic reticulum stress (ERS) underlies oxygen-glucose deprivation and reoxygenation (OGD/R)-induced cell damage, an in vitro model of ischemia/reperfusion injury. However, that OXA inhibits ERS-induced apoptosis in the OGD/R model has not been reported. In the present study, we investigated the neuroprotective effect of OXA (0.1 μM) on OGD/R-induced damage in the human neuroblastoma cell line SH-SY5Y. After OXA treatment following 4 h oxygen-glucose deprivation (OGD) and then 4 h reoxygenation (R), cell morphology, viability, and apoptosis were analyzed by histology, Cell Counting Kit-8 assay, and flow cytometry, respectively. Western blotting was used to measure expression levels of ERS- and apoptosis-related proteins. To determine signaling pathways involved in OXA-mediated neuroprotection, the Gi pathway inhibitor pertussis toxin (PTX; 100 ng/mL) and PI3K inhibitor LY294002 (LY; 10 μM) were added. In addition, in order to prove the specificity of these characteristics, the OXA antagonist Suvorexant (DORA; Ki of 0.55 nM and 0.35 nM for OX1R and OX2R) was used for intervention. Our results showed that OGD/R induced cell damage, manifested as morphological changes and a significant decrease in viability. Furthermore, Western blotting detected an increase in ERS-related proteins GRP78, p-IRE1α, p-JNK, and Cleaved caspase-12, as well as apoptosis-related proteins Cleaved caspase-3 and Bax, and a decrease in the anti-apoptosis factor Bcl-2. OXA intervention alleviated the degree of cellular damage, and protein expression was also reversed. In addition, the protective effect of OXA was reduced by adding PTX and LY. Meanwhile, after the use of DORA, changes in the expression of related proteins were detected, and it was found that the protective effect of OXA was weakened. Collectively, our results indicate that OXA has a neuroprotective effect on OGD/R-induced cell damage by inhibiting ERS-induced apoptosis through the combined action of Gi and PI3K signaling pathways. These findings help to clarify the mechanism underlying the neuroprotective action of OXA, which should aid the development of further candidate drugs, and provide a new therapeutic direction for the treatment of ischemic stroke

    Social trust and subjective well-being of first-generation college students in China: the multiple mediation effects of self-compassion and social empathy

    Get PDF
    Previous studies have found that subjective well-being is associated with social trust, self-compassion, and social empathy. Based on online fieldwork with 662 first-generation college students (54.7% male) in China, this study aimed to investigate the serial mediation effects of self-compassion and social empathy on the relationship between social trust and subjective well-being. The results showed that subjective well-being was significantly positively correlated with social trust, trust in people, self-compassion, and social empathy. Both self-compassion and social empathy partially mediated the relationship between social trust and subjective well-being, and fully mediated the association between trust in people and subjective well-being. We used a serial mediation model to estimate the effect of general social trust, including trust in people, on subjective well-being. The findings that self-compassion and social empathy mediated the relationship between trusting attitudes toward society, especially people, and subjective well-being expand the literature on social trust and the mechanism of social trust on subjective well-being. The results also highlight the significance of improving mental health education and intervention among first-generation college students in China

    Roles for heterodimerization of APJ and B2R in promoting cell proliferation via ERK1/2-eNOS signaling pathway

    Get PDF
    Apelin receptor (APJ) and bradykinin B2 receptor (B2R) play an important role in many physiological processes and share multiple similar characteristics in distribution and functions in the cardiovascular system. We first identified the endogenous expression of APJ and B2R in human umbilical vein endothelial cells (HUVECs) and their co-localization on human embryonic kidney (HEK) 293 cells membrane. A suite of bioluminescence and fluorescence resonance energy transfer (BRET and FRET), proximity ligation assay (PLA), and co-immunoprecipitation (Co-IP) was exploited to demonstrate formation of functional APJ and B2R heterodimer in HUVECs and transfected cells. Stimulation with apelin-13 and bradykinin (BK) increased the phosphorylation of the endothelial nitric oxide synthase (eNOS) in HUVECs, which could be inhibited by the silencing of APJ or B2R, indicating the APJ-B2R dimer is critical for eNOS phosphorylation in HUVECs. Furthermore, the increase of NOS and extracellular signal regulated kinases1/2 (ERK1/2) phosphorylation mediated by APJ/B2R dimer can be inhibited by U0126 and U73122, respectively, suggesting that the heterodimer might activate the PLC/ERK1/2/eNOS signaling pathway, and finally leading to a significant increase in cell proliferation. Thus, we uncovered for the first time the existence of APJ-B2R heterodimer and provided a promising new target in cardiovascular therapeutics

    Orexin-A protects against cerebral ischemia-reperfusion injury by inhibiting excessive autophagy through OX1R-mediated MAPK/ERK/mTOR pathway

    Get PDF
    Orexin A (OXA) is a neuroprotective peptide that exerts protective effects on multiple physiological and pathological processes. Activation of autophagy is linked to the occurrence of cerebral ischemia–reperfusion injury (CIRI); however, its function remains incompletely understood. In this study, OXA was sought to exert its neuroprotective role by regulating autophagy in oxygen and glucose deprivation and reoxygenation (OGD/R) model and middle cerebral artery occlusion (MCAO) model of rats, and to elucidate the underlying molecular mechanisms. Acridine orange (AO) staining was used to evaluate autophagic vacuoles. Cell viability was measured by CCK8. The levels of p-ERK1/2, t-ERK1/2, p-mTOR, LC3B, Beclin 1, and p62 were evaluated by western blotting. Apoptosis rate was detected by Hoechst 33342 staining and Terminal deoxynucleotidyltransferase–mediated dUTP nick-end labeling (TUNEL). OXA treatment alleviated neuronal apoptosis and significantly inhibited autophagy activity. Mechanistically, OXA exerted its neuroprotective effects in vivo and in vitro by suppressing over-activated autophagy by modulating OX1R-mediated MAPK/ERK/mTOR pathway. The results of this study elucidate the roles of autophagy in CIRI and the mechanisms underlying the neuroprotective action of OXA. Our findings could facilitate the development of novel therapeutics for ischemic stroke

    Strength of Hydrogen Bond Network Takes Crucial Roles in the Dissociation Process of Inhibitors from the HIV-1 Protease Binding Pocket

    Get PDF
    To understand the underlying mechanisms of significant differences in dissociation rate constant among different inhibitors for HIV-1 protease, we performed steered molecular dynamics (SMD) simulations to analyze the entire dissociation processes of inhibitors from the binding pocket of protease at atomistic details. We found that the strength of hydrogen bond network between inhibitor and the protease takes crucial roles in the dissociation process. We showed that the hydrogen bond network in the cyclic urea inhibitors AHA001/XK263 is less stable than that of the approved inhibitor ABT538 because of their large differences in the structures of the networks. In the cyclic urea inhibitor bound complex, the hydrogen bonds often distribute at the flap tips and the active site. In contrast, there are additional accessorial hydrogen bonds formed at the lateral sides of the flaps and the active site in the ABT538 bound complex, which take crucial roles in stabilizing the hydrogen bond network. In addition, the water molecule W301 also plays important roles in stabilizing the hydrogen bond network through its flexible movement by acting as a collision buffer and helping the rebinding of hydrogen bonds at the flap tips. Because of its high stability, the hydrogen bond network of ABT538 complex can work together with the hydrophobic clusters to resist the dissociation, resulting in much lower dissociation rate constant than those of cyclic urea inhibitor complexes. This study may provide useful guidelines for design of novel potent inhibitors with optimized interactions

    A Center-Based Secure and Stable Clustering Algorithm for VANETs on Highways

    No full text
    Currently, communications in the vehicular ad hoc network (VANET) can be established via both Dedicated Short Range Communication (DSRC) and mobile cellular networks. To make use of existing Long Term Evolution (LTE) network in data transmissions, many methods are proposed to manage VANETs. Grouping the vehicles into clusters and organizing the network by clusters are one of the most universal and most efficacious ways. Since the high mobility of vehicles makes VANETs different from other mobile ad hoc networks (MANETs), the previous cluster-based methods for MANETs may have trouble for VANETs. In this paper, we introduce a center-based clustering algorithm to help self-organized VANETs forming stable clusters and decrease the status change frequency of vehicles on highways and two metrics. A novel Cluster Head (CH) selection algorithm is also proposed to reduce the impact of vehicle motion differences. We also introduce two metrics to improve the security of VANETs. A simulation is conducted to compare our mechanism to some other mechanisms. The results show that our mechanism obtains high stability and lower packet loss rate
    • …
    corecore