49 research outputs found

    A rapid and robust method for shot boundary detection and classification in uncompressed MPEG video sequences

    Get PDF
    Abstract Shot boundary and classification is the first and most important step for further analysis of video content. Shot transitions include abrupt changes and gradual changes. A rapid and robust method for shot boundary detection and classification in MPEG compressed sequences is proposed in this paper. We firstly only decode I frames partly in video sequences to generate DC images and then calculate the difference values of histogram of these DC images in order to detect roughly the shot boundary. Then, for abrupt change detection, shot boundary is precisely located by movement information of B frames. Shot gradual change is located by difference values of successive N I frames and classified by the alteration of the number of intra coding macroblocks (MBs) in P frames. All features such as the number of MBs in frames are extracted from uncompressed video sequences. Experiments have been done on the standard TRECVid video database and others to reveal the performance of the proposed method

    Low temperature, mechanical wound, and exogenous salicylic acid (SA) can stimulate the SA signaling molecule as well as its downstream pathway and the formation of fruiting bodies in Flammulina filiformis

    Get PDF
    Low temperature (LT) and mechanical wound (MW), as two common physics methods, have been empirically used in production to stimulate the primordia formation of Flammulina filiformis, which is typically produced using the industrial production mode. However, the detailed effect on the fruiting body formation and important endogenous hormones and signaling pathways in this process is poorly understood. In this study, LT, MW, their combination, i.e., MW + LT, and low concentration of SA (0.1 mM SA) treatments were applied to the physiologically mature mycelia of F. filiformis. The results showed that the primordia under the four treatments began to appear on the 5th−6th days compared with the 12th day in the control (no treatment). The MW + LT treatment produced the largest number of primordia (1,859 per bottle), followed by MW (757), SA (141), and LT (22), compared with 47 per bottle in the control. The HPLC results showed that the average contents of endogenous SA were significantly increased by 1.3 to 2.6 times under four treatments. A total of 11 SA signaling genes were identified in the F. filiformis genome, including 4 NPR genes (FfNpr1-4), 5 TGA genes (FfTga1-5), and 2 PR genes (FfPr1-2). FfNpr3 with complete conserved domains (ANK and BTB/POZ) showed significantly upregulated expression under all four above treatments, while FfNpr1/2/4 with one domain showed significantly upregulated response expression under the partial treatment of all four treatments. FfTga1-5 and FfPr1-2 showed 1.6-fold to 8.5-fold significant upregulation with varying degrees in response to four treatments. The results suggested that there was a correlation between “low temperature/mechanical wound—SA signal—fruiting body formation”, and it will help researchers to understand the role of SA hormone and SA signaling pathway genes in the formation of fruiting bodies in fungi

    Design of Twin Builder-Based Digital Twin Online Monitoring System for Crane Girders

    No full text
    The crossbeam is frequently subjected to alternating loads during work as an essential load-bearing part of the crane. However, due to the large volume and the limitations of detection technology, it is impossible to realize online monitoring of the mechanical state. The ongoing advancement of ROMing and digital twin technology plays a pivotal role in facilitating the resolution of this particular issue. In this paper, we take the crane beam as the physical entity and combine the Twin Builder reduced-order technology and Deployer digital twin deployment technology to establish a digital twin of the beam. The load recognition model within the twin system exhibits a prediction error rate of ±5%. Furthermore, the accuracy of the ROM surpasses that of conventional machine learning models by a factor of 25. Upon deployment on the web platform, the results are delivered within 0.5 s, representing a substantial improvement as it is merely 1/15 of the time required for traditional 3D displays. The digital twin online monitoring system has the advantages of high accuracy and low requirements for monitoring equipment, which can be widely used in engineering practice to solve the problem that the mechanical state of large parts cannot be accurately monitored online

    On Connected Target k-Coverage in Heterogeneous Wireless Sensor Networks

    No full text
    Coverage and connectivity are two important performance evaluation indices for wireless sensor networks (WSNs). In this paper, we focus on the connected target k-coverage (CTC k ) problem in heterogeneous wireless sensor networks (HWSNs). A centralized connected target k-coverage algorithm (CCTC k ) and a distributed connected target k-coverage algorithm (DCTC k ) are proposed so as to generate connected cover sets for energy-efficient connectivity and coverage maintenance. To be specific, our proposed algorithms aim at achieving minimum connected target k-coverage, where each target in the monitored region is covered by at least k active sensor nodes. In addition, these two algorithms strive to minimize the total number of active sensor nodes and guarantee that each sensor node is connected to a sink, such that the sensed data can be forwarded to the sink. Our theoretical analysis and simulation results show that our proposed algorithms outperform a state-of-art connected k-coverage protocol for HWSNs

    Heuristic Algorithms for One-Slot Link Scheduling in Wireless Sensor Networks under SINR

    No full text
    One-slot link scheduling is important for enhancing the throughput capacity of wireless sensor networks. It includes two aspects: maximum links scheduling (MLS) and maximum weighted links scheduling (MWLS). In this paper we propose two heuristic algorithms for the two NP-hard problems with obvious power assignments under the SINR (signal-to-interference-plus-noise-ratio) model. For MLS, we propose an algorithm MTMA (maximum tolerance and minimum affectance ), which improves the currently best approximation algorithm by 28%–62% on average. For MWLS, we give an effective heuristic algorithm MWMA (maximum weighted and minimum affectance ), which performs better on improving the throughput and reducing the running time. The correctness and performance of our algorithms are confirmed through theoretical analysis and comprehensive simulations

    Identification of novel and robust internal control genes from Volvariella volvacea that are suitable for RT-qPCR in filamentous fungi

    No full text
    The selection of appropriate internal control genes (ICGs) is a crucial step in the normalization of real-time quantitative PCR (RT-qPCR) data. Housekeeping genes are habitually selected for this purpose, despite accumulating evidence on their instability. We screened for novel, robust ICGs in the mushroom forming fungus Volvariella volvacea. Nine commonly used and five newly selected ICGs were evaluated for expression stability using RT-qPCR data in eight different stages of the life cycle of V. volvacea. Three different algorithms consistently determined that three novel ICGs (SPRYp, Ras and Vps26) exhibited the highest expression stability in V. volvacea. Subsequent analysis of ICGs in twenty-four expression profiles from nine filamentous fungi revealed that Ras was the most stable ICG amongst the Basidiomycetous samples, followed by SPRYp, Vps26 and ACTB. Vps26 was expressed most stably within the analyzed data of Ascomycetes, followed by HH3 and ÎČ-TUB. No ICG was universally stable for all fungal species, or for all experimental conditions within a species. Ultimately, the choice of an ICG will depend on a specific set of experiments. This study provides novel, robust ICGs for Basidiomycetes and Ascomycetes. Together with the presented guiding principles, this enables the efficient selection of suitable ICGs for RT-qPCR

    IDUC: An Improved Distributed Unequal Clustering Protocol for Wireless Sensor Networks

    No full text
    Due to the imbalanced energy consumption among nodes in wireless sensor networks, some nodes die prematurely, which decreases the network lifetime. To solve this problem, existing clustering protocols usually construct unequal clusters by exploiting uneven competition radius. Taking their imperfection on designing the uneven competition radius and intercluster communication into consideration, this paper proposes an improved distributed unequal clustering protocol (IDUC) for wireless sensor networks, where nodes are energy heterogeneous and scattered unevenly. The cores of IDUC are the formation of unequal cluster topology and the construction of intercluster communication routing tree. Compared with previous protocols, IDUC is suitable for various network scenarios, and it can balance the energy consumption more efficiently and extend the lifetime of networks significantly

    Metagenomics Approach to the Intestinal Microbiome Structure and Abundance in High-Fat-Diet-Induced Hyperlipidemic Rat Fed with (−)-Epigallocatechin-3-Gallate Nanoparticles

    No full text
    The effects of nanoparticles (NPs) on microbiota homeostasis and their physiological relevance are still unclear. Herein, we compared the modulation and consequent pharmacological effects of oral administration of (−)-epigallocatechin-3-gallate (EGCG)-loaded β-cyclodextrin (β-CD) NPs (EGCG@β-CD NPs) and EGCG on gut microbiota. EGCG@β-CD NPs were prepared using self-assembly and their influence on the intestinal microbiome structure was analyzed using a metagenomics approach. The “Encapsulation efficiency (EE), particle size, polydispersity index (PDI), zeta potential” of EGCG@β-CD NPs were recorded as 98.27 ± 0.36%, 124.6 nm, 0.313 and –24.3 mV, respectively. Surface morphology of EGCG@β-CD NPs was observed as spherical. Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and molecular docking studies confirmed that EGCG could be well encapsulated in β-CD and formed as EGCG@β-CD NPs. After being continuously administered EGCG@β-CD NPs for 8 weeks, the serum cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and liver malondialdehyde (MDA) levels in the rats were significantly decreased, while the levels of catalase (CAT) and apolipoprotein-A1 (apo-A1) in the liver increased significantly in the hyperlipidemia model of rats, when compared to the high-fat-diet group. Furthermore, metagenomic analysis revealed that the ratio of Verrucomicrobia/Bacteroidetes was altered and Bacteroidetes decreased in the high-fat diet +200 mg/kg·bw EGCG@β-CD NPs group, while the abundance of Verrucomicrobia was significantly increased, especially Akkermansia muciniphila in rat feces. EGCG@β-CD NPs could be a promising EGCG delivery strategy to modulate the gut microbiota, enhancing its employment in the prevention of hyperlipidemia

    Bonding Properties between Fly Ash/Slag-Based Engineering Geopolymer Composites and Concrete

    No full text
    Concrete infrastructure repair remains a formidable challenge. The application of engineering geopolymer composites (EGCs) as a repair material in the field of rapid structural repair can ensure the safety of structural facilities and prolong their service life. However, the interfacial bonding performance of existing concrete with EGCs is still unclear. The purpose of this paper is to explore a kind of EGC with good mechanical properties, and to evaluate the bonding performance of EGCs with existing concrete using a tensile bonding test and single shear bonding test. At the same time, X-ray diffraction (XRD) and Scanning electron microscopy (SEM) were adopted to study the microstructure. The results showed that the bond strength increased with the increase in interface roughness. For polyvinyl alcohol (PVA)-fiber-reinforced EGCs, the bond strength increased with the increase in FA content (0–40%). However, with the change of FA content (20–60%), the bond strength of polyethylene (PE) fiber-reinforced EGCs have little change. The bond strength of PVA-fiber-reinforced EGCs increased with the increase in water–binder ratio (0.30–0.34), while that of PE-fiber-reinforced EGCs decreased. The bond–slip model of EGCs with existing concrete was established based on the test results. XRD studies showed that when the FA content was 20–40%, the content of C-S-H gels was high and the reaction was sufficient. SEM studies showed that when the FA content was 20%, the PE fiber–matrix bonding was weakened to a certain extent, so the ductility of EGC was improved. Besides, with the increase in the water–binder ratio (0.30–0.34), the reaction products of the PE-fiber-reinforced EGC matrix gradually decreased

    Optimal codons in Tremella fuciformis end in C/G, a strong difference with known Tremella species

    No full text
    Tremella fuciformis is a popular edible fungus with fruiting bodies that can be produced in large quantities at low costs, while it is easy to transform and cultivate as yeast. This makes it an attractive potential bioreactor. Enhanced heterologous gene expression through codon optimization would be useful, but until now codon usage preferences in T. fuciformis remain unknown. To precisely determine the preferred codon usage of T. fuciformis we sequenced the genome of strain Tr26 resulting in a 24.2 Mb draft genome with 10,040 predicted genes. 3288 of the derived predicted proteins matched the UniProtKB/Swiss-Prot databases with 40 % or more similarity. Corresponding gene models of this subset were subsequently optimized through repetitive comparison of alternative start codons and selection of best length matching gene models. For experimental confirmation of gene models, 96 random clones from an existing T. fuciformis cDNA library were sequenced, generating 80 complete CDSs. Calculated optimal codons for the 3288 predicted and the 80 cloned CDSs were highly similar, indicating sufficient accuracy of predicted gene models for codon usage analysis. T. fuciformis showed a strong preference for C and then G at the third base pair position of used codons, while average GC content of predicted genes was slightly higher than the total genome sequence average. Most optimal codons ended in C or G except for one, and an increased frequency of C ending codons was observed in genes with higher expression levels. Surprisingly, the preferred codon usage in T. fuciformis strongly differed from T. mesenterica and C. neoformans. Instead, optimal codon usage was similar to more distant related species such as Ustilago maydis and Neurospora crassa. Despite much higher overall sequence homology between T. fuciformis and T. mesenterica, only 7 out of 21 optimal codons were equal, whereas T. fuciformis shared up to 20 out of 21 optimal codons with other species. Clearly, codon usage in Tremella can differ largely and should be estimated for individual species. The precise identification of optimal and high expression related codons is therefore an important step in the development of T. fuciformis as a bioreactor system
    corecore