6,178 research outputs found

    Mapping the Dirac point in gated bilayer graphene

    Full text link
    We have performed low temperature scanning tunneling spectroscopy measurements on exfoliated bilayer graphene on SiO2. By varying the back gate voltage we observed a linear shift of the Dirac point and an opening of a band gap due to the perpendicular electric field. In addition to observing a shift in the Dirac point, we also measured its spatial dependence using spatially resolved scanning tunneling spectroscopy. The spatial variation of the Dirac point was not correlated with topographic features and therefore we attribute its shift to random charged impurities.Comment: 3 pages, 3 figure

    Distribution of localized states from fine analysis of electron spin resonance spectra of organic semiconductors: Physical meaning and methodology

    Full text link
    We develop an analytical method for the processing of electron spin resonance (ESR) spectra. The goal is to obtain the distributions of trapped carriers over both their degree of localization and their binding energy in semiconductor crystals or films composed of regularly aligned organic molecules [Phys. Rev. Lett. v. 104, 056602 (2010)]. Our method has two steps. We first carry out a fine analysis of the shape of the ESR spectra due to the trapped carriers; this reveals the distribution of the trap density of the states over the degree of localization. This analysis is based on the reasonable assumption that the linewidth of the trapped carriers is predetermined by their degree of localization because of the hyperfine mechanism. We then transform the distribution over the degree of localization into a distribution over the binding energies. The transformation uses the relationships between the binding energies and the localization parameters of the trapped carriers. The particular relation for the system under study is obtained by the Holstein model for trapped polarons using a diagrammatic Monte Carlo analysis. We illustrate the application of the method to pentacene organic thin-film transistors.Comment: 14 pages, 11 figure

    Multimodal Data Fusion based on the Global Workspace Theory

    Get PDF
    We propose a novel neural network architecture, named the Global Workspace Network (GWN), which addresses the challenge of dynamic and unspecified uncertainties in multimodal data fusion. Our GWN is a model of attention across modalities and evolving through time, and is inspired by the well-established Global Workspace Theory from the field of cognitive science. The GWN achieved average F1 score of 0.92 for discrimination between pain patients and healthy participants and average F1 score = 0.75 for further classification of three pain levels for a patient, both based on the multimodal EmoPain dataset captured from people with chronic pain and healthy people performing different types of exercise movements in unconstrained settings. In these tasks, the GWN significantly outperforms the typical fusion approach of merging by concatenation. We further provide extensive analysis of the behaviour of the GWN and its ability to address uncertainties (hidden noise) in multimodal data

    Factorization and Unitarity in Superstring Theory

    Full text link
    The overall coefficient of the two-loop 4-particle amplitude in superstring theory is determined by making use of the factorization and unitarity. To accomplish this we computed in detail all the relevant tree and one-loop amplitudes involved and determined their overall coefficients in a consistent way.Comment: LaTex file, 19 pages, 4 figures; v2, minor corrections and figures corrected; v3, minor corrections with the English, to be published in JHE

    Defect Detection System for Smartphone Front Camera Based on Improved Template Matching Algorithm

    Get PDF
    Automatic defect detection plays crucial role in resilient manufacturing in terms of product quality and cost effectiveness. With reference to the smartphone front cameras production process, the most recurrent defects can be classified into no hole, inner hole burr, outer circle damage, hole deformation, outer circle fracture and hole position offset. Due to the fast production lines and the defects micro size, Sampling-based methods has huge uncertainty and limitation, and Machine learning-based methods are characterised by low efficiency. To tackle these issues, this paper proposes a machine vision-based detection methods of smartphone front camera based on a multi-step template matching algorithm to reduce the computational effort. Specifically, in order to improve the algorithm efficiency, the images of the smartphone front cameras, acquired using industrial image acquisition devices are pre-processed by performing Hough circle and line transformations respectively, then locate the exact defect area as a region of interest (ROI). Finally, a multi-step template matching algorithm is used to detect and classify a number of common defects. Experimental results show an excellent suitability of the proposed system in detecting front camera surface defects. A benchmarking with other available technologies highlights how the proposed system yields an improvement in the detection speed by 46%, along with an improvement in the detection accuracy by 9%. The successful industrial implementation is discussed with reference to the integration into an automatic defect detection system in a smartphone front camera manufacturing context

    Incommensurate magnetic structure of CeRhIn5

    Full text link
    The magnetic structure of the heavy fermion antiferromagnet CeRhIn5 is determined using neutron diffraction. We find a magnetic wave vector q_M=(1/2,1/2,0.297), which is temperature independent up to T_N=3.8K. A staggered moment of 0.374(5) Bohr magneton at 1.4K, residing on the Ce ion, spirals transversely along the c axis. The nearest neighbor moments on the tetragonal basal plane are aligned antiferromagnetically.Comment: 4 pages, 4 figures There was an extra factor of 2 in Eq (2). This affects the value of staggered moment. The correct staggered moment is 0.374(5) Bohr magneton at 1.4

    Factorization of the Two Loop Four-Particle Amplitude in Superstring Theory Revisited

    Full text link
    We study in detail the factorization of the newly obtained two-loop four-particle amplitude in superstring theory. In particular some missing factors from the scalar correlators are obtained correctly, in comparing with a previous study of the factorization in two-loop superstring theory. Some details for the calculation of the factorization of the kinematic factor are also presented.Comment: 11 pages, 1 figure; v2, minor corrections and references update
    • …
    corecore