9,414 research outputs found

    Challenge on the Astrophysical R-process Calculation with Nuclear Mass Models

    Full text link
    Our understanding of the rapid neutron capture nucleosynthesis process in universe depends on the reliability of nuclear mass predictions. Initiated by the newly developed mass table in the relativistic mean field theory (RMF), in this paper the influence of mass models on the rr-process calculations is investigated assuming the same astrophysical conditions. The different model predictions on the so far unreachable nuclei lead to significant deviations in the calculated r-process abundances.Comment: 3 pages, 3 figure

    Deduction of the quantum numbers of low-lying states of 6-nucleon systems based on symmetry

    Get PDF
    The inherent nodal structures of the wavefunctions of 6-nucleon systems have been investigated. The existence of a group of six low-lying states dominated by L=0 has been deduced. The spatial symmetries of these six states are found to be mainly {4,2} and {2,2,2}.Comment: 8 pages, no figure

    Spatially resolved spectroscopy of monolayer graphene on SiO2

    Full text link
    We have carried out scanning tunneling spectroscopy measurements on exfoliated monolayer graphene on SiO2_2 to probe the correlation between its electronic and structural properties. Maps of the local density of states are characterized by electron and hole puddles that arise due to long range intravalley scattering from intrinsic ripples in graphene and random charged impurities. At low energy, we observe short range intervalley scattering which we attribute to lattice defects. Our results demonstrate that the electronic properties of graphene are influenced by intrinsic ripples, defects and the underlying SiO2_2 substrate.Comment: 6 pages, 7 figures, extended versio

    Ideal strengths and bonding properties of PuO2 under tension

    Full text link
    We perform a first-principles computational tensile test on PuO2_{2} based on density-functional theory within local density approximation (LDA)+\emph{U} formalism to investigate its structural, mechanical, magnetic, and intrinsic bonding properties in the four representative directions: [001], [100], [110], and [111]. The stress-strain relations show that the ideal tensile strengths in the four directions are 81.2, 80.5, 28.3, and 16.8 GPa at strains of 0.36, 0.36, 0.22, and 0.18, respectively. The [001] and [100] directions are prominently stronger than other two directions since that more Pu-O bonds participate in the pulling process. Through charge and density of states analysis along the [001] direction, we find that the strong mixed ionic/covalent character of Pu-O bond is weakened by tensile strain and PuO2_{2} will exhibit an insulator-to-metal transition after tensile stress exceeds about 79 GPa.Comment: 11 pages, 6 figure

    Repeating head-on collisions in an optical trap and the evaluation of spin-dependent interactions among neutral particles

    Full text link
    A dynamic process of repeating collisions of a pair of trapped neutral particles with weak spin-dependent interaction is designed and studied. Related theoretical derivation and numerical calculation have been performed to study the inherent coordinate-spin and momentum-spin correlation. Due to the repeating collisions the effect of the weak interaction can be accumulated and enlarged, and therefore can be eventually detected. Numerical results suggest that the Cr-Cr interaction, which has not yet been completely clear, could be thereby determined. The design can be in general used to determine various interactions among neutral atoms and molecules, in particular for the determination of very weak forces.Comment: 15 pages, 7 figure

    77Se NMR study of pairing symmetry and spin dynamics in KyFe2-xSe2

    Full text link
    We present a 77Se NMR study of the newly discovered iron selenide superconductor KyFe2-xSe2, in which Tc = 32 K. Below Tc, the Knight shift 77K drops sharply with temperature, providing strong evidence for singlet pairing. Above Tc, Korringa-type relaxation indicates Fermi-liquid behavior. Our experimental results set strict constraints on the nature of possible theories for the mechanism of high-Tc superconductivity in this iron selenide system.Comment: Chemical composition of crystals determined. Accepted in Physical Review Letter

    Generic Constraints on the Relativistic Mean-Field and Skyrme-Hartree-Fock Models from the Pure Neutron Matter Equation of State

    Full text link
    We study the nuclear symmetry energy S(rho) and related quantities of nuclear physics and nuclear astrophysics predicted generically by relativistic mean-field (RMF) and Skyrme-Hartree-Fock (SHF) models. We establish a simple prescription for preparing equivalent RMF and SHF parametrizations starting from a minimal set of empirical constraints on symmetric nuclear matter, nuclear binding energy and charge radii, enforcing equivalence of their Lorenz effective masses, and then using the pure neutron matter (PNM) equation of state (EoS) obtained from ab-initio calculations to optimize the pure isovector parameters in the RMF and SHF models. We find the resulting RMF and SHF parametrizations give broadly consistent predictions of the symmetry energy J and its slope parameter L at saturation density within a tight range of <~2 MeV and <~6 MeV respectively, but that clear model dependence shows up in the predictions of higher-order symmetry energy parameters, leading to important differences in (a) the slope of the correlation between J and L from the confidence ellipse, (b) the isospin-dependent part of the incompressibility of nuclear matter K_tau, (c) the symmetry energy at supra-saturation densities, and (d) the predicted neutron star radii. The model dependence can lead to about 1-2 km difference in predictions of the neutron star radius given identical predicted values of J, L and symmetric nuclear matter (SNM) saturation properties. Allowing the full freedom in the effective masses in both models leads to constraints of 30<~J<~31.5 MeV, 35<~L<~60 MeV, -330<~K_tau<~-216 MeV for the RMF model as a whole and 30<~J<~33 MeV, 28<~L<~65 MeV, -420<~K_tau<~-325 MeV for the SHF model as a whole. Notably, given PNM constraints, these results place RMF and SHF models as a whole at odds with some constraints on K_tau inferred from giant monopole resonance and neutron skin experimental results.Comment: 15 pages, 7 figures, 4 table

    DancingLines: An Analytical Scheme to Depict Cross-Platform Event Popularity

    Full text link
    Nowadays, events usually burst and are propagated online through multiple modern media like social networks and search engines. There exists various research discussing the event dissemination trends on individual medium, while few studies focus on event popularity analysis from a cross-platform perspective. Challenges come from the vast diversity of events and media, limited access to aligned datasets across different media and a great deal of noise in the datasets. In this paper, we design DancingLines, an innovative scheme that captures and quantitatively analyzes event popularity between pairwise text media. It contains two models: TF-SW, a semantic-aware popularity quantification model, based on an integrated weight coefficient leveraging Word2Vec and TextRank; and wDTW-CD, a pairwise event popularity time series alignment model matching different event phases adapted from Dynamic Time Warping. We also propose three metrics to interpret event popularity trends between pairwise social platforms. Experimental results on eighteen real-world event datasets from an influential social network and a popular search engine validate the effectiveness and applicability of our scheme. DancingLines is demonstrated to possess broad application potentials for discovering the knowledge of various aspects related to events and different media
    corecore