114 research outputs found

    Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker

    Full text link
    Due to its unique electronic property and the Pauli Blocking Principle, atomic layer graphene possesses wavelength-independent ultrafast saturable absorption, which can be exploited for the ultrafast photonics application. Through chemical functionalization, a graphene-polymer nanocomposite membrane was fabricated and firstly used to mode lock a fiber laser. Stable mode locked solitons with 3 nJ pulse energy, 700 fs pulse width at the 1590 nm wavelength have been directly generated from the laser. We show that graphene-polymer nanocomposites could be an attractive saturable absorber for high power fiber laser mode locking.Comment: Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker. Applied Physics Letters, Accepte

    Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser

    Full text link
    Atomic layer graphene possesses wavelength-insensitive ultrafast saturable absorption, which can be exploited as a full-band mode locker. Taking advantage of the wide band saturable absorption of the graphene, we demonstrate experimentally that wide range (1570 nm - 1600nm) continuous wavelength tunable dissipative solitons could be formed in an erbium doped fiber laser mode locked with few layer graphene

    Long Range Intrinsic Ferromagnetism in Two Dimensional Materials and Dissipationless Future Technologies

    Get PDF
    The inherent susceptibility of low-dimensional materials to thermal fluctuations has long been expected to poses a major challenge to achieving intrinsic long-range ferromagnetic order in two-dimensional materials. The recent explosion of interest in atomically thin materials and their assembly into van der Waals heterostructures has renewed interest in two-dimensional ferromagnetism, which is interesting from a fundamental scientific point of view and also offers a missing ingredient necessary for the realization of spintronic functionality in van der Waals heterostructures. Recently several atomically thin materials have been shown to be robust ferromagnets. Such ferromagnetism is thought to be enabled by magneto crystalline anisotropy which suppresses thermal fluctuations. In this article, we review recent progress in two-dimensional ferromagnetism in detail and predict new possible two-dimensional ferromagnetic materials. We also discuss the prospects for applications of atomically thin ferromagnets in novel dissipationless electronics, spintronics, and other conventional magnetic technologies. Particularly atomically thin ferromagnets are promising to realize time reversal symmetry breaking in two-dimensional topological systems, providing a platform for electronic devices based on the quantum anomalous Hall Effect showing dissipationless transport. Our proposed directions will assist the scientific community to explore novel two-dimensional ferromagnetic families which can spawn new technologies and further improve the fundamental understanding of this fascinating area.Comment: To be appear in Applied Physics Review

    Large nonlinear Kerr effect in graphene

    Full text link
    Under strong laser illumination, few-layer graphene exhibits both a transmittance increase due to saturable absorption and a nonlinear phase shift. Here, we unambiguously distinguish these two nonlinear optical effects and identify both real and imaginary parts of the complex nonlinear refractive index of graphene. We show that graphene possesses a giant nonlinear refractive index n2=10-7cm2W-1, almost nine orders of magnitude larger than bulk dielectrics. We find that the nonlinear refractive index decreases with increasing excitation flux but slower than the absorption. This suggests that graphene may be a very promising nonlinear medium, paving the way for graphene-based nonlinear photonics.Comment: Optics Letters received 12/02/2011; accepted 03/12/2012; posted 03/21/2012,Doc. ID 15912

    Vector Dissipative Solitons in Graphene Mode Locked Fiber Lasers

    Full text link
    Vector soliton operation of erbium-doped fiber lasers mode locked with atomic layer graphene was experimentally investigated. Either the polarization rotation or polarization locked vector dissipative solitons were experimentally obtained in a dispersion-managed cavity fiber laser with large net cavity dispersion, while in the anomalous dispersion cavity fiber laser, the phase locked NLSE solitons and induced NLSE soliton were experimentally observed. The vector soliton operation of the fiber lasers unambiguously confirms the polarization insensitive saturable absorption of the atomic layer graphene when the light is incident perpendicular to its 2D atomic layer
    corecore