11 research outputs found
Machine learning approach to detect arc faults based on regular coupling features
During AC series arc faults (SAFs), arcing current features can change or vanish under different conditions. The phenomena make it challenging to detect SAFs. To address the issues, this paper presents a detection model based on regular coupling features (RCFs). After the model is only trained by the samples in single-load circuits, it can detect SAFs under unknown multi-load circuits. To extract RCFs, asymmetric magnetic flux is coupled by passing the live line and the neutral line through the current transformer. According to the unique signals, two time-domain features and one frequency-domain feature are extracted to represent RCFs, including impulse -factor analysis, covariance-matrix analysis and multiple frequency-band analysis. Then, the impulse factor and its threshold are used to preprocess the signals and decrease analysis complexity for the classifier. Finally, the experimental results show that the proposed method has significantly improved generalization ability and detection accuracy in SAF detection
A coupling method for identifying arc faults based on short-observation-window SVDR
This article presents a new method for effective detection of ac series arc fault (AF) (SAF) and extraction of SAF characteristics in residential buildings, which addresses the challenges with conventional current detection methods in discriminating arcing and nonarcing current due to their similarity. Different from the traditional method, in the proposed method, the differential magnetic flux is coupled to obtain high-frequency signals by putting the live line and the neutral line through the current transformer, which can effectively solve the problem of SAF features disappearing in the trunk-line current. However, similar to the traditional method, the effectiveness of the proposed coupling method could also be compromised when being used in cases with dimmer load and load starting process. This is found to be caused by the presence of high-Amplitude pulse phenomenon in the nonarcing signals in these scenarios, which are incorrectly detected as arcing signals in other loads. To address this issue, a short-observation-window singular value decomposition and reconstruction algorithm (SOW-SVDR) is used to enhance the capability to identify SAFs by the coupling method. The proposed method has been implemented and validated according to the UL1699 standard with different types of loads connected to the system and also tested under their starting processes. The experimental results show that the proposed approach is more effective in detecting AFs compared with existing methods
AC series arc fault detection based on RLC arc model and convolutional neural network
AC series arc faults in the power system can lead to electrical fires. However, the generalization performance of the determined detection method would be affected under unknown loads, as current features vary with loads. To address this issue, this paper presents a series arc fault detection method based on a high-frequency (HF) RLC arc model and one-dimensional convolutional neural network (1DCNN). By the current transformer used for receiving differential HF features (D-HFCT), current with complex features is firstly simplified and divided into different oscillation-signal types. Since the types of real D-HFCT data are limited, the RLC arc model is used to generate D-HFCT data with various types of oscillation features by adjusting load types, initial phase angles and Bernoulli-sequence frequencies. Then, the simulated data are adopted to train the 1DCNN model. Finally, the trained 1DCNN model can detect series arc faults under different types of real loads. Compared with the 1DCNN method driven by the limited types of real-current data, the presented method shows good generalization ability and achieves 99.33% average detection accuracy under nine types of unknown loads, which benefits from the training of simulated D-HFCT data with abundant HF oscillation features
Load Transfer Device for Solving a Three-Phase Unbalance Problem Under a Low-Voltage Distribution Network
In the low-voltage (LV) distribution network, a three-phase unbalance problem often exists. It does not only increase line loss but also threaten the safety of the distribution network. Therefore, the author designs a residential load transfer device for a LV distribution network that can deal with a three-phase unbalance problem by changing the connecting phase of the load. It consists of three parts: user controller for phase swapping, central controller for signal processing and monitoring platform for strategy calculation. This design was based on message queuing telemetry transport (MQTT) communication protocol, and Long Range and 4th Generation mobile telecommunications (LoRa + 4G) communication mode is used to realize the wireless connection between equipment and monitoring platform, and a control scheme is proposed. The improved multi-population genetic algorithm (IMPGA) with multi-objective is used to find the optimal swapping strategy, which is implemented on the monitoring platform. Then the phase swapping is realized by remote control, and the function of reducing three-phase unbalance is realized. The practical experimental result shows that the method can help to reduce the three-phase unbalance rate by changing the connection phase of the load, and the simulation results verify the effectiveness of the algorithm in the phase-swapping strategy
A Novel Differential High-Frequency Current Transformer Sensor for Series Arc Fault Detection
Fault arc detection is an important technology to ensure the safe operation of electrical equipment and prevent electrical fires. The high-frequency noise of the arc current is one of the typical arc characteristics of almost all loads. In order to accurately detect arc faults in a low-voltage alternating-current (AC) system, a novel differential high-frequency current transformer (D-HFCT) sensor for collecting high-frequency arc currents was proposed. The sensitivity and frequency band of the designed sensor were verified to ensure that the acquisition requirements of the high-frequency current were satisfied. A series arc fault simulation experiment system was built, and resistive, inductive, and non-linear load and high-power shielding load experiments were carried out. Experiments showed that the sensor output signal was close to zero in the non-arc state, and the sensor output response was a high-frequency glitch in the arc state. The results were consistent for different loads, and the discrimination between normal and fault states was obvious, which proved that the sensor is suitable for series arc fault detection