56 research outputs found
Investigating Spatial Interdependence in E-Bike Choice Using Spatially Autoregressive Model
Increased attention has been given to promoting e-bike usage in recent years. However, the research gap still exists in understanding the effects of spatial interdependence on e-bike choice. This study investigated how spatial interdependence affected the e-bike choice. The Moran’s I statistic test showed that spatial interdependence exists in e-bike choice at aggregated level. Bayesian spatial autoregressive logistic analyses were then used to investigate the spatial interdependence at individual level. Separate models were developed for commuting and non-commuting trips. The factors affecting e-bike choice are different between commuting and non-commuting trips. Spatial interdependence exists at both origin and destination sides of commuting and non-commuting trips. Travellers are more likely to choose e-bikes if their neighbours at the trip origin and destination also travel by e-bikes. And the magnitude of this spatial interdependence is different across various traffic analysis zones. The results suggest that, without considering spatial interdependence, the traditional methods may have biased estimation results and make systematic forecasting errors.</p
Transcriptome analysis of germ cell changes in male Chinese mitten crabs (Eriocheir sinensis) induced by rhizocephalan parasite, Polyascus gregaria
The parasitism by Polyascus gregaria on Eriocheir sinensis induces feminization of the appearance of male crabs, misleading fishermen to bring them to the breeding ponds as female crabs to cultivate broodstock selection. However, there are few studies on whether P. gregaria feminizes the male germ cells, resulting in a decline in the fecundity of male crabs. Therefore, this study aims to clarify the changes in gene expression levels of male crab testes after being parasitized by P. gregaria through transcriptome sequencing to evaluate the change in fecundity. We selected parasitized and healthy male crabs from a pond culture for comparison of gene expression in germ cells. The results showed that, compared with healthy male crabs, there were 104 genes with significantly different expressions, of which 79 were up-regulated and 25 were down-regulated. These genes are mainly focused on the cytoskeleton pathway in cell components and cellular protein complex assembly in biological processes. Several spermatogenesis-related genes, such as Kazal-type protease inhibitor, which inhibits gelatinolytic activities of sperm proteases, and juvenile hormone esterase 6, which degrades methyl farnesoate, were up-regulated; while the down-regulated expression of certain heat shock proteins may lead to spermatogenic dysfunction. In addition, some immune-related genes, such as double whey acidic protein domain-containing protein and serine proteinase inhibitor 3, were significantly up-regulated. These results indicated that P. gregaria changed the development process and cell structure of male host germ cells to inhibit sperm proliferation and maturation, while multiple immune pathways in the hosts were activated to resist P. gregaria invasion
Development of a nested PCR assay for specific detection of Metschnikowia bicuspidata infecting Eriocheir sinensis
In recent years, the “milky disease” caused by Metschnikowia bicuspidata has seriously affected the Eriocheir sinensis culture industry. Discovering and blocking the transmission route has become the key to controlling this disease. The existing polymerase chain reaction (PCR) detection technology for M. bicuspidata uses the ribosomal DNA (rDNA) sequence, but low sensitivity and specificity lead to frequent false detections. We developed a highly specific and sensitive nested PCR method to detect M. bicuspidata, by targeting the hyphally regulated cell wall protein (HYR) gene. This nested HYR-PCR produced a single clear band, showed no cross-reaction with other pathogens, and was superior to rDNA-PCR in specificity and sensitivity. The sensitivity of nested HYR-PCR (6.10 × 101 copies/μL) was greater than those of the large subunit ribosomal RNA gene (LSU rRNA; 6.03 × 104 copies/μL) and internal transcribed spacer (ITS; 6.74 × 105 copies/μL) PCRs. The nested HYR-PCR also showed a higher positivity rate (71.1%) than those obtained with LSU rRNA (16.7%) and ITS rDNA (24.4%). In conclusion, we developed a new nested HYR-PCR method for the specific and sensitive detection of M. bicuspidata infection. This will help to elucidate the transmission route of M. bicuspidata and to design effective management and control measures for M. bicuspidata disease
An international collaborative investigation of beginning seventh grade students' understandings of scientific inquiry: Establishing a baseline
Although understandings of scientific inquiry (as opposed to conducting inquiry) are included in science education reform documents around the world, little is known about what students have learned about inquiry during their elementary school years. This is partially due to the lack of any assessment instrument to measure understandings about scientific inquiry. However, a valid and reliable assessment has recently been developed and published, Views About Scientific Inquiry (VASI; Lederman et al. [2014], Journal of Research in Science Teaching, 51, 65–83). The purpose of this large-scale international project was to collect the first baseline data on what beginning middle school students have learned about scientific inquiry during their elementary school years. Eighteen countries/regions spanning six continents including 2,634 students participated in the study. The participating countries/regions were: Australia, Brazil, Chile, Egypt, England, Finland, France, Germany, Israel, Mainland China, New Zealand, Nigeria, South Africa, Spain, Sweden, Taiwan, Turkey, and the United States. In many countries, science is not formally taught until middle school, which is the rationale for choosing seventh grade students for this investigation. This baseline data will simultaneously provide information on what, if anything, students learn about inquiry in elementary school, as well as their beginning knowledge as they enter secondary school. It is important to note that collecting data from all of the approximately 200 countries globally was not humanly possible, and it was also not possible to collect data from every region of each country. The results overwhelmingly show that students around the world at the beginning of grade seven have very little understandings about scientific inquiry. Some countries do show reasonable understandings in certain aspects but the overall picture of understandings of scientific inquiry is not what is hoped for after completing 6 years of elementary education in any country
High circulating CD39+ regulatory T cells predict poor survival for sepsis patients
SummaryBackgroundSepsis encompasses two phases, the ‘hyper’-reactive phase and the ‘hypo’-reactive phase. The initial inflammatory stage is quickly counterbalanced by an anti-inflammatory response, which compromises the immune system, leading to immune suppression. Regulatory T cells (Tregs) have been implicated in the pathogenesis of sepsis by inducing immunosuppression; however, the role of CD39+ Tregs in the process of sepsis is uncertain. This study investigated the dynamic levels of CD39+ Tregs and their phenotypic change in sepsis.MethodsFourteen patients with systemic inflammatory response syndrome (SIRS), 42 patients with sepsis, and 14 healthy controls were enrolled. Sequential blood samples were used to analyze the numbers of CD39+ Tregs and their phenotypic changes. Survival at 28 days was used to evaluate the capacity of CD39+ Treg levels to predict mortality in sepsis patients.ResultsSepsis patients displayed a high percentage (3.13%, 1.46%, and 0.35%, respectively) and mean fluorescence intensity (MFI) (59.65, 29.7, and 24.3, respectively) of CD39+ Tregs compared with SIRS patients and healthy subjects. High-level expression of CD39+ Tregs was correlated with the severity of sepsis, which was reflected by the sepsis-related organ failure assessment score (r=0.322 and r=0.31, respectively). In addition, the expression of CD39+ Tregs was associated with survival of sepsis patients (p<0.01). By receiver-operating characteristic (ROC) curve analysis, the percentage and MFI of CD39+ Tregs showed similar sensitivities and specificities to predict mortality (74.2% and 85.1%, and 73.9% and 84.1%, respectively). Using Kaplan–Meier curves to assess the impact of CD39+ Tregs percentage and MFI on overall survival, we found that a high CD39+ Tregs percentage (p<0.001; >4.1%) and MFI (p<0.001; >49.2) were significantly associated with mortality. Phenotypically, CD39+ Tregs from sepsis patients showed high expression of CD38 and PD-1 (p<0.01 and p<0.01 respectively).ConclusionsIncreased expression of CD39+ Tregs was associated with a poor prognosis for sepsis patients, which suggests that CD39+ Treg levels could be used as a biomarker to predict the outcome of sepsis patients
Edge states in a two-dimensional honeycomb lattice of massive magnetic skyrmions
We study the collective dynamics of a two-dimensional honeycomb lattice of
magnetic skyrmions. By performing large-scale micromagnetic simulations, we
find multiple chiral and non-chiral edge modes of skyrmion oscillations in the
lattice. The non-chiral edge states are due to the Tamm-Shockley mechanism,
while the chiral ones are topologically protected against structure defects and
hold different handednesses depending on the mode frequency. To interpret the
emerging multiband nature of the chiral edge states, we generalize the massless
Thiele's equation by including a second-order inertial term of skyrmion mass as
well as a third-order non-Newtonian gyroscopic term, which allows us to model
the band structure of skrymion oscillations. Theoretical results compare well
with numerical simulations. Our findings uncover the importance of high order
effects in strongly coupled skyrmions and are helpful for designing novel
topological devices.Comment: 6 pages,4 figures,accepted by Physical Review B as a Rapid
Communicatio
Selective CO2 electroreduction over an oxidederived gallium catalyst
The electrochemical CO2 reduction reaction (CO2RR) powered by renewable electricity has emerged as a promising approach to alleviate global warming and energy depletion simultaneously. Notably, efficient catalysts containing Earth-abundant elements to achieve high CO2RR performance are in great demand for future applications. Herein, carbon-supported gallia gel nanoparticles were synthesized by precipitating gallium nitrate on carbon black in an ethanolic ammonia solution. Nano-sized gallia nanoparticles uniformly dispersed on the carbon support achieved a maximum CO faradaic efficiency of 77.0% at -0.71 V vs. the reversible hydrogen electrode (RHE) in CO2-saturated 0.1 M KHCO3 solution, showing a dramatic improvement compared to a bulk Ga electrode with only 24.2% CO faradaic efficiency at -0.80 V vs. RHE. X-ray photoelectron spectroscopy measurements revealed that surface Ga3+ species were reduced to metallic Ga when subjected to a negative potential during the CO2RR, indicative of the formation of oxide-derived active gallium sites. Control experiments further highlighted the necessity of close coalescence between the nano-sized gallia particles and the conductive carbon support. The present study underscores the feasibility of improving the CO2RR performance of Ga-related materials through nanostructuring of oxide-derived gallium catalysts
Offset-FA: A Uniform Method to Handle Both Unbounded and Bounded Repetitions in Regular Expression Matching
With the exponential growth of cyber–physical systems (CPSs), security challenges have emerged; attacks on critical infrastructure could result in catastrophic consequences. Intrusion detection is the foundation for CPS security protection, and deep-packet inspection is the primary method for signature-matched mechanisms. This method usually employs regular expression matching (REM) to detect possible threats in the packet payload. State explosion is the critical challenge for REM applications, which originates primarily from features of large character sets with unbounded (closures) or bounded (counting) repetitions. In this work, we propose Offset-FA to handle these repetitions in a uniform mechanism. Offset-FA eliminates state explosion by extracting the repetitions from the nonexplosive string fragments. Then, these fragments are compiled into a fragment-DFA, while a fragment relation table and a reset table are constructed to preserve their connection and offset relationship. To our knowledge, Offset-FA is the first automaton to handle these two kinds of repetitions together with a uniform mechanism. Experiments demonstrate that Offset-FA outperforms state-of-the-art solutions in both space cost and matching speed on the premise of matching correctness, and achieves a comparable matching speed with that of DFA on practical rule sets
Two-step pyrolysis of ZIF-8 functionalized with ammonium ferric citrate for efficient oxygen reduction reaction
Zeolitic imidazolate frameworks (ZIFs) are widely employed in catalyst synthesis as parental materials for electrochemical energy storage and conversion. Herein, we have demonstrated a facile synthesis of highly efficient catalyst for oxygen reduction reaction in both alkaline and acidic medium, which is derived from ZIF-8 functionalized with ammonium ferric citrate via two-step pyrolysis in Ar and NH3 atmosphere. The results reveal that the catalytic activity improvement after NH3 pyrolysis benefits from mesopore-dominated morphology and high utilization of Fe-containing active sites. The optimum catalyst shows excellent performance in zinc-air battery and polymer electrolyte membrane fuel cell tests. (C) 2017 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved
- …