19 research outputs found

    No Evolutionary Response to Four Generations of Laboratory Selection on Antipredator Behavior of Aedes albopictus: Potential Implications for Biotic Resistance to Invasion

    Get PDF
    Aedes albopictus (Skuse) is an invasive container-dwelling mosquito and an important disease vector that co-occurs with the native mosquito, Aedes triseriatus (Say), and the predatory midge, Corethrella appandiculata (Grabham). Larval Ae. triseriatus show significantly greater antipredatory responses when compared to larval Ae. albopictus in the presence of predation cues from C. appendiculata. The potential for evolution of antipredatory behavioral responses to C. appendiculata in Ae. albopictus is unknown. We used a controlled laboratory selection experiment to test whether Ae. albopictus could evolve antipredatory behavioral responses to C. appendiculata predation. We subjected replicate Ae. albopictus populations to four generations of predation by C. appendiculata or a predator-free control treatment and compared the behavior and life history of Ae. albopictus in the two treatments in each generation. There were no differences in Ae. albopictus behavioral responses between predation and control lines in any of the four generations. There was also no evidence of differences in life histories between predation and control lines. Ae. albopictus is superior as a competitor compared with Ae. triseriatus, which it has replaced in areas where C. appendiculata are rare. Our results suggest limited potential for Ae. albopictus to evolve stronger antipredatory behavioral responses to C. appendiculata predation and imply that C. appendiculata will continue to act as an impediment to invasion by Ae. albopictus and replacement of Ae. triseriatus and to promote coexistence of these competitors

    Interspecific and intraspecific differences in foraging preferences of container-dwelling mosquitoes

    Get PDF
    Feeding preferences of larval container-dwelling mosquitoes are not well understood. Primary production is often absent in container systems and external inputs of animal and plant detritus supply the energy base of container food webs by supporting microorganism prey for mosquitoes. We quantified the feeding preferences of Aedes albopictus (Skuse), a non-native invasive mosquito, and Ochlerotahts triseriatus (Say), a native mosquito, when given a choice of animal and plant detritus. We tested for interpopulational (Illinois versus Florida) differences in feeding preferences, and quantified each species\u27 performance on these two detritus types. When given a choice, both species spent significantly more time feeding at an animal detritus patch. The Illinois populations of both species spent more time feeding at animal detritus patches than did the Florida populations, which spent more time feeding at leaf detritus than did Illinois populations. Both species reached a later instar and had higher survival when reared with animal versus leaf detritus. Ae. albopictus spent more time feeding at animal detritus and had higher survival when reared on either detritus type compared with Oc. triseriatus. Greater preference for and better performance exhibited by Ae. albopictus in high-quality food (animal detritus) may result in preemption of high quality food and may contribute to the superior competitive ability of Ae. albopictus relative to Oc. triseriatus

    Direct and indirect effects of animal detritus on growth, survival, and mass of invasive container mosquito Aedes albopictus (Diptera : Culicidae

    Get PDF
    Compared with plant detritus, animal detritus yields higher growth rates, survival, adult mass, and population growth of container-dwelling mosquitoes. It is unclear whether the benefit from animal detritus to larvae results from greater microorganism growth, direct ingestion of animal detritus by larvae, or some other mechanism. We tested alternative mechanisms by which animal detritus may benefit the invasive container-dwelling mosquito Aedes albopictus (Skuse) (Diptera: Culicidae). In the laboratory, larvae were reared under three conditions with access to 1) detritus, but where microorganisms in the water column were reduced through periodic flushing; 2) water column microorganisms, but larvae had no direct access to detritus; or 3) both water column microorganisms and detritus. Access treatments were conducted for three masses of animal detritus: 0.005, 0.010, and 0.020 g. Water column bacterial productivity (measured via incorporation of [H-3]leucine) decreased significantly with flushing and with larval presence. Removing microorganisms through flushing significantly reduced mass of adult mosquitoes (both sexes), and it significantly prolonged developmental times of females compared with treatments where water column microorganisms or microorganisms and detritus were available. Survival to adulthood was greatest when larvae had access to both water column microorganisms and 0.020 g of detritus, but it declined when only water column microorganisms were available or when 0.005 g of detritus was used. These findings indicate both direct (as a food source) and indirect (assisting with decomposition of detritus) roles of microorganisms in producing the benefit of animal detritus to container mosquito larvae

    Behavioral differences of invasive container-dwelling mosquitoes to a native predator

    Get PDF
    ABSTRACT Aquatic prey show behavioral modiÞcations in the presence of predation-risk cues that alleviate their risk from predation. Aedes albopictus (Skuse), Aedes japonicus (Theobald), and Culex pipiens L. are invasive mosquitoes in North America, and their larvae are prey for the native mosquito predator, Toxorhynchites rutilus (Coquillett). Ae. albopictus and Ae. japonicus are recent invaders, whereas Cx. pipiens has been in the United States for Ͼ100 yr. In the presence of predation-risk cues from Tx. rutilus larvae, Cx. pipiens larvae increased the time spent resting at the surface (least risky behavior) more than the other prey species. Ae. japonicus larvae increased resting at the surface of the containers more than Ae. albopictus larvae in the presence of predation-risk cues. Cx. pipiens larvae spent more time motionless at the surface even in the absence of predation-risk cues when compared with the other species, indicating that Cx. pipiens larvae are the least vulnerable prey. As compared with the other prey species, Ae. albopictus larvae exhibited more high-risk behaviors both in the presence and absence of predation-risk cues, indicating that they are the most vulnerable prey. Ae. albopictus is the superior competitor; however, predation by Tx. rutilus larvae may prevent competitive exclusion by Ae. albopictus and promote coexistence among the three prey species

    Interspecific Competition between Aedes albopictus and A. sierrensis: potential for Competitive Displacement in the Western United States.

    Full text link
    The Asian tiger mosquito, Aedes albopictus, was first detected in North America twenty five years ago. It utilizes water-holding container habitats as immature development sites, and has rapidly spread throughout the eastern United States. Aedes albopictus has occasionally been detected in the western United States, but until recently no established populations of A. albopictus were reported. The western tree-hole mosquito, Aedes sierrensis, is the most common tree-hole mosquito throughout the western United States, and is expected to more frequently encounter A. albopictus. In this study, competition between A. albopictus from the eastern United States and A. sierrensis from the western United States was tested in order to better understand the potential for either competitive displacement of A. sierrensis by A. albopictus or competitive resistance of A. sierrensis to A. albopictus. Varying densities of each species were reared with limited resources in a response surface design. Consistent with a prior study, we found that A. albopictus was clearly a superior larval competitor than A. sierrensis. Aedes sierrensis λ' (finite rate of increase) decreased with increasing A. albopictus density, but in contrast, A. albopictus λ' actually increased with increasing A. sierrensis density; a result that was not reflected by individual fitness parameters. These results indicate that A. sierrensis will not be an effective barrier to A. albopictus invasion into tree-holes in the western United States
    corecore