16 research outputs found

    Anti-ulcer properties, cytokines, and apoptosis regulatory effects of Olea europaea leaves from Hail Province, Saudi Arabia

    Get PDF
    This study investigated the anti-ulcer properties of raw olive leaf powder (OLP) and its immunomodulatory potential through the cytokine network. The efficacy of OLP extract in treating stomach ulcers in rats in ethanol-induced models was examined using a single dosage (100, 200, 400 mg/kg) in groups 4, 5, and 6. The OLP demonstrated substantial anti-ulcer action even at 100 mg/kg. The activity was better at 400 mg/kg and almost equivalent to the conventional omeprazole treatment at 20 mg/kg in group 3. The cytokine network was studied in groups 1, 2, 3, and 6. The cytokine network was efficiently regulated by reducing the production of cytokines such as IL-1β, IL-2, IL-4, IL-6, IL-10, and TNF-α. The levels of caspase-3 and caspase-9 were also lowered in groups 3 and 4 considerably at p < 0.05. It is interesting to note that the expression of IFN was greater in animals treated with OLP in group 4, as compared to animals treated with omeprazole in group 3, as well as animals from the disease control group 2, when analyzed at a significance level of p < 0.05. The results revealed that OLP has intriguing potential for anti-ulcer action, and possesses immunomodulatory capabilities to control inflammatory cytokines and apoptotic markers

    In vitro Antimicrobial Properties of Pluronic F-127 Injectable Thermoresponsive Hydrogel

    Get PDF
    Pluronic F-127 (PF-127) hydrogel is a versatile biomaterial with promising applications in drug delivery, tissue engineering, and regenerative medicine. PF-127 has antiadhesive activity that prevents bacterial adhesion by creating a hydrated layer on the bacterial surface. This property makes PF-127 suitable for preventing implant-associated infections. In this study, we aimed to evaluate the antibacterial properties of PF-127 using field isolates of Staphylococcus aureus (Gram-positive bacteria) and Escherichia coli (Gram-negative bacteria) and compare them with different antibiotic standards. The antimicrobial potential was assessed using disk diffusion assays with four standard concentrations (20%, 25%, 30%, and 40%). The test microorganisms were inoculated on agar plates, and sterile filter paper disks infused with PF-127 hydrogels were placed alongside standard antibiotic disks. After incubation, the inhibition zones were measured to determine antimicrobial activity. Our results showed that PF-127 lacked intrinsic antimicrobial activity against S. aureus and E. coli at the tested concentrations. In conclusion, PF-127 hydrogel is a promising neutral carrier hydrogel system for loading antibiotics and antimicrobial compounds. Its unique properties, such as biocompatibility and thermo-responsive behaviour, combined with its antiadhesive activity, make it an ideal candidate for various biomedical applications

    Overlapping SETBP1 gain-of-function mutations in Schinzel-Giedion syndrome and hematologic malignancies

    Get PDF
    Schinzel-Giedion syndrome (SGS) is a rare developmental disorder characterized by multiple malformations, severe neurological alterations and increased risk of malignancy. SGS is caused by de novo germline mutations clustering to a 12bp hotspot in exon 4 of SETBP1. Mutations in this hotspot disrupt a degron, a signal for the regulation of protein degradation, and lead to the accumulation of SETBP1 protein. Overlapping SETBP1 hotspot mutations have been observed recurrently as somatic events in leukemia. We collected clinical information of 47 SGS patients (including 26 novel cases) with germline SETBP1 mutations and of four individuals with a milder phenotype caused by de novo germline mutations adjacent to the SETBP1 hotspot. Different mutations within and around the SETBP1 hotspot have varying effects on SETBP1 stability and protein levels in vitro and in in silico modeling. Substitutions in SETBP1 residue I871 result in a weak increase in protein levels and mutations affecting this residue are significantly more frequent in SGS than in leukemia. On the other hand, substitutions in residue D868 lead to the largest increase in protein levels. Individuals with germline mutations affecting D868 have enhanced cell proliferation in vitro and higher incidence of cancer compared to patients with other germline SETBP1 mutations. Our findings substantiate that, despite their overlap, somatic SETBP1 mutations driving malignancy are more disruptive to the degron than germline SETBP1 mutations causing SGS. Additionally, this suggests that the functional threshold for the development of cancer driven by the disruption of the SETBP1 degron is higher than for the alteration in prenatal development in SGS. Drawing on previous studies of somatic SETBP1 mutations in leukemia, our results reveal a genotype-phenotype correlation in germline SETBP1 mutations spanning a molecular, cellular and clinical phenotype

    A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers

    Get PDF
    Breast cancer (BC) risk for BRCA1 and BRCA2 mutation carriers varies by genetic and familial factors. About 50 common variants have been shown to modify BC risk for mutation carriers. All but three, were identified in general population studies. Other mutation carrier-specific susceptibility variants may exist but studies of mutation carriers have so far been underpowered. We conduct a novel case-only genome-wide association study comparing genotype frequencies between 60,212 general population BC cases and 13,007 cases with BRCA1 or BRCA2 mutations. We identify robust novel associations for 2 variants with BC for BRCA1 and 3 for BRCA2 mutation carriers, P < 10−8, at 5 loci, which are not associated with risk in the general population. They include rs60882887 at 11p11.2 where MADD, SP11 and EIF1, genes previously implicated in BC biology, are predicted as potential targets. These findings will contribute towards customising BC polygenic risk scores for BRCA1 and BRCA2 mutation carriers

    Osteochondral defect creation in animal model with brad point drill bits - A preliminary study

    No full text
    Introduction: The shift from manual to machine-based operations has also affected the creation of cartilage defect models. Manual drilling lacks precision and consistency compared to power drills, which offer controlled speed and depth. Moreover, manual burrs may produce defects with irregular edges and uneven surfaces. We introduce a superior method utilizing a power drill with a brad point bit to overcome these limitations, ensuring precision, consistency, and ergonomics. Methods: Our innovative approach uses a brad point drill bit to generate cartilage repair animal models. Tissue sections on day 90 were stained using Hematoxylin and Eosin, Safranin-O, and Masson's trichrome to assess proteoglycan and collagen contents. In contrast, differentiation of hyaline cartilage was evaluated using RGB trichrome staining. Results: This technique can be considered refined compared to conventional methods. The spur-cutting edges bring down splintering, resulting in a smooth, clean defect. The wide flute in the drill bit helps in the smooth and continuous outflow of debris without plugging into the defect. The histological and radiographic findings demonstrated the suitability of these models for proficiently creating and assessing cartilage regeneration over 90 days. Conclusion: Although preliminary findings are promising, further studies will be helpful to standardize and establish this technique. This proof of concept paper provides a foundation for future studies that aim to compare the animal model with other existing models, emphasizing the need for further investigation
    corecore