18 research outputs found

    Dystrophin deficiency exacerbates skeletal muscle pathology in dysferlin-null mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in the genes coding for either dystrophin or dysferlin cause distinct forms of muscular dystrophy. Dystrophin links the cytoskeleton to the sarcolemma through direct interaction with β-dystroglycan. This link extends to the extracellular matrix by β-dystroglycan's interaction with α-dystroglycan, which binds extracellular matrix proteins, including laminin α2, agrin and perlecan, that possess laminin globular domains. The absence of dystrophin disrupts this link, leading to compromised muscle sarcolemmal integrity. Dysferlin, on the other hand, plays an important role in the Ca<sup>2+</sup>-dependent membrane repair of damaged sarcolemma in skeletal muscle. Because dysferlin and dystrophin play different roles in maintaining muscle cell integrity, we hypothesized that disrupting sarcolemmal integrity with dystrophin deficiency would exacerbate the pathology in dysferlin-null mice and allow further characterization of the role of dysferlin in skeletal muscle.</p> <p>Methods</p> <p>To test our hypothesis, we generated dystrophin/dysferlin double-knockout (DKO) mice by breeding <it>mdx </it>mice with dysferlin-null mice and analyzed the effects of a combined deficiency of dysferlin and dystrophin on muscle pathology and sarcolemmal integrity.</p> <p>Results</p> <p>The DKO mice exhibited more severe muscle pathology than either <it>mdx </it>mice or dysferlin-null mice, and, importantly, the onset of the muscle pathology occurred much earlier than it did in dysferlin-deficient mice. The DKO mice showed muscle pathology of various skeletal muscles, including the mandible muscles, as well as a greater number of regenerating muscle fibers, higher serum creatine kinase levels and elevated Evans blue dye uptake into skeletal muscles. Lengthening contractions caused similar force deficits, regardless of dysferlin expression. However, the rate of force recovery within 45 minutes following lengthening contractions was hampered in DKO muscles compared to <it>mdx </it>muscles or dysferlin-null muscles, suggesting that dysferlin is required for the initial recovery from lengthening contraction-induced muscle injury of the dystrophin-glycoprotein complex-compromised muscles.</p> <p>Conclusions</p> <p>The results of our study suggest that dysferlin-mediated membrane repair helps to limit the dystrophic changes in dystrophin-deficient skeletal muscle. Dystrophin deficiency unmasks the function of dysferlin in membrane repair during lengthening contractions. Dystrophin/dysferlin-deficient mice provide a very useful model with which to evaluate the effectiveness of therapies designed to treat dysferlin deficiency.</p

    Cdx4 Dysregulates Hox Gene Expression and Generates Acute Myeloid Leukemia Alone and in Cooperation with Meis1a in a Murine Model

    Get PDF
    HOX genes have emerged as critical effectors of leukemogenesis, but the mechanisms that regulate their expression in leukemia are not well understood. Recent data suggest that the caudal homeobox transcription factors CDX1, CDX2, and CDX4, developmental regulators of HOX gene expression, may contribute to HOX gene dysregulation in leukemia. We report here that CDX4 is expressed normally in early hematopoietic progenitors and is expressed aberrantly in approximately 25% of acute myeloid leukemia (AML) patient samples. Cdx4 regulates Hox gene expression in the adult murine hematopoietic system and dysregulates Hox genes that are implicated in leukemogenesis. Furthermore, bone marrow progenitors that are retrovirally engineered to express Cdx4 serially replate in methylcellulose cultures, grow in liquid culture, and generate a partially penetrant, long-latency AML in bone marrow transplant recipients. Coexpression of the Hox cofactor Meis1a accelerates the Cdx4 AML phenotype and renders it fully penetrant. Structure-function analysis demonstrates that leukemic transformation requires intact Cdx4 transactivation and DNA-binding domains but not the putative Pbx cofactor interaction motif. Together, these data indicate that Cdx4 regulates Hox gene expression in adult hematopoiesis and may serve as an upstream regulator of Hox gene expression in the induction of acute leukemia. Inasmuch as many human leukemias show dysregulated expression of a spectrum of HOX family members, these collective findings also suggest a central role for CDX4 expression in the genesis of acute leukemia

    Disruption of the Sarcoglycan–Sarcospan Complex in Vascular Smooth Muscle A Novel Mechanism for Cardiomyopathy and Muscular Dystrophy

    Get PDF
    AbstractTo investigate mechanisms in the pathogenesis of cardiomyopathy associated with mutations of the dystrophin–glycoprotein complex, we analyzed genetically engineered mice deficient for either α-sarcoglycan (Sgca) or δ-sarcoglycan (Sgcd). We found that only Sgcd null mice developed cardiomyopathy with focal areas of necrosis as the histological hallmark in cardiac and skeletal muscle. Absence of the sarcoglycan–sarcospan (SG-SSPN) complex in skeletal and cardiac membranes was observed in both animal models. Loss of vascular smooth muscle SG-SSPN complex was only detected in Sgcd null mice and associated with irregularities of the coronary vasculature. Administration of a vascular smooth muscle relaxant prevented onset of myocardial necrosis. Our data indicate that disruption of the SG-SSPN complex in vascular smooth muscle perturbs vascular function, which initiates cardiomyopathy and exacerbates muscular dystrophy

    Gene Signatures Derived from a c-MET-Driven Liver Cancer Mouse Model Predict Survival of Patients with Hepatocellular Carcinoma

    Get PDF
    Biomarkers derived from gene expression profiling data may have a high false-positive rate and must be rigorously validated using independent clinical data sets, which are not always available. Although animal model systems could provide alternative data sets to formulate hypotheses and limit the number of signatures to be tested in clinical samples, the predictive power of such an approach is not yet proven. The present study aims to analyze the molecular signatures of liver cancer in a c-MET-transgenic mouse model and investigate its prognostic relevance to human hepatocellular carcinoma (HCC). Tissue samples were obtained from tumor (TU), adjacent non-tumor (AN) and distant normal (DN) liver in Tet-operator regulated (TRE) human c-MET transgenic mice (n = 21) as well as from a Chinese cohort of 272 HBV- and 9 HCV-associated HCC patients. Whole genome microarray expression profiling was conducted in Affymetrix gene expression chips, and prognostic significances of gene expression signatures were evaluated across the two species. Our data revealed parallels between mouse and human liver tumors, including down-regulation of metabolic pathways and up-regulation of cell cycle processes. The mouse tumors were most similar to a subset of patient samples characterized by activation of the Wnt pathway, but distinctive in the p53 pathway signals. Of potential clinical utility, we identified a set of genes that were down regulated in both mouse tumors and human HCC having significant predictive power on overall and disease-free survival, which were highly enriched for metabolic functions. In conclusions, this study provides evidence that a disease model can serve as a possible platform for generating hypotheses to be tested in human tissues and highlights an efficient method for generating biomarker signatures before extensive clinical trials have been initiated

    Predictive Genes in Adjacent Normal Tissue Are Preferentially Altered by sCNV during Tumorigenesis in Liver Cancer and May Rate Limiting

    Get PDF
    Background: In hepatocellular carcinoma (HCC) genes predictive of survival have been found in both adjacent normal (AN) and tumor (TU) tissues. The relationships between these two sets of predictive genes and the general process of tumorigenesis and disease progression remains unclear. Methodology/Principal Findings: Here we have investigated HCC tumorigenesis by comparing gene expression, DNA copy number variation and survival using ~250 AN and TU samples representing, respectively, the pre-cancer state, and the result of tumorigenesis. Genes that participate in tumorigenesis were defined using a gene-gene correlation meta-analysis procedure that compared AN versus TU tissues. Genes predictive of survival in AN (AN-survival genes) were found to be enriched in the differential gene-gene correlation gene set indicating that they directly participate in the process of tumorigenesis. Additionally the AN-survival genes were mostly not predictive after tumorigenesis in TU tissue and this transition was associated with and could largely be explained by the effect of somatic DNA copy number variation (sCNV) in cis and in trans. The data was consistent with the variance of AN-survival genes being rate-limiting steps in tumorigenesis and this was confirmed using a treatment that promotes HCC tumorigenesis that selectively altered AN-survival genes and genes differentially correlated between AN and TU. Conclusions/Significance: This suggests that the process of tumor evolution involves rate-limiting steps related to the background from which the tumor evolved where these were frequently predictive of clinical outcome. Additionally treatments that alter the likelihood of tumorigenesis occurring may act by altering AN-survival genes, suggesting that the process can be manipulated. Further sCNV explains a substantial fraction of tumor specific expression and may therefore be a causal driver of tumor evolution in HCC and perhaps many solid tumor types. © 2011 Lamb et al.published_or_final_versio

    The cdx-hox pathway in hematopoietic stem cell formation from embryonic stem cells

    No full text
    Embryonic stem cells (ESCs) differentiated in vitro will yield a multitude of hematopoietic derivatives, yet progenitors displaying true stem cell activity remain difficult to obtain. Possible causes are a biased differentiation to primitive yolk sac-type hematopoiesis, and a variety of developmental or functional deficiencies. Recent studies in the zebrafish have identified the caudal homeobox transcription factors (cdx1/4) and posterior hox genes (hoxa9a, hoxb7a) as key regulators for blood formation during embryonic development. Activation of Cdx and Hox genes during the in vitro differentiation of mouse ESCs followed by co-culture on supportive stromal cells generates ESC-derived hematopoietic stem cells (HSCs) capable of multilineage repopulation of lethally irradiated adult mice. We show here that brief pulses of ectopic Cdx4 or HoxB4 expression are sufficient to enhance hematopoiesis during ESC differentiation, presumably by acting as developmental switches to activate posterior Hox genes. Insights into the role of the Cdx-Hox gene pathway during embryonic hematopoietic development in the zebrafish have allowed us to improve the derivation of repopulating HSCs from murine ESCs

    Cdx4 is dispensable for murine adult hematopoietic stem cells but promotes MLL-AF9-mediated leukemogenesis

    Get PDF
    Background: Cdx4 is a homeobox gene essential for normal blood formation during embryonic development in the zebrafish, through activation of posterior Hox genes. However, its role in adult mammalian hematopoiesis has not been extensively studied and its requirement in leukemia associated with Hox gene expression alteration is unclear. Design and Methods: We inactivated Cdx4 in mice through either a germline or conditional knockout approach and analyzed requirement for Cdx4 in both normal adult hematopoiesis and leukemogenesis initiated by the MLL-AF9 fusion oncogene. Results: Here, we report that loss of Cdx4 had a minimal effect on adult hematopoiesis. Indeed, although an increase in white blood cell counts was observed, no significant differences in the distribution of mature blood cells, progenitors or stem cells were observed in Cdx4-deficient animals. In addition, long-term repopulating activity in competitive transplantation assays was not significantly altered. In vitro, B-cell progenitor clonogenic potential was reduced in Cdx4-deficient animals but no significant alteration of mature B cells was detected in vivo. Finally, induction of acute myeloid leukemia in mice by MLL-AF9 was significantly delayed in the absence of Cdx4 in a retroviral transduction/bone marrow transplant model. Conclusions: These observations indicate that Cdx4 is dispensable for the establishment and maintenance of normal hematopoiesis in adult mammals. These results, therefore, outline substantial differences in the Cdx-Hox axis between mammals and zebrafish and support the hypothesis that Cdx factors are functionally redundant during mammalian hematopoietic development under homeostatic conditions. In addition, our results suggest that Cdx4 participates in MLL-AF9-mediated leukemogenesis supporting a role for Cdx factors in the pathogenesis of myeloid leukemia.Stem Cell and Regenerative Biolog
    corecore