178 research outputs found

    Towards a quantum theory of de Sitter space

    Full text link
    We describe progress towards constructing a quantum theory of de Sitter space in four dimensions. In particular we indicate how both particle states and Schwarzschild de Sitter black holes can arise as excitations in a theory of a finite number of fermionic oscillators. The results about particle states depend on a conjecture about algebras of Grassmann variables, which we state, but do not prove.Comment: JHEP3 LaTex - 19 page

    One conjecture and two observations on de Sitter space

    Full text link
    We propose that the state represented by the Nariai black hole inside de Sitter space is the ground state of the de Sitter gravity, while the pure de Sitter space is the maximal energy state. With this point of view, we investigate thermodynamics of de Sitter space, we find that if there is a dual field theory, this theory can not be a CFT in a fixed dimension. Near the Nariai limit, we conjecture that the dual theory is effectively an 1+1 CFT living on the radial segment connecting the cosmic horizon and the black hole horizon. If we go beyond the de Sitter limit, the "imaginary" high temperature phase can be described by a CFT with one dimension lower than the spacetime dimension. Below the de Sitter limit, we are approaching a phase similar to the Hagedorn phase in 2+1 dimensions, the latter is also a maximal energy phase if we hold the volume fixed.Comment: 12 pages, harvmac; references added; version for publication in JHE

    Remarks on the Racetrack Scheme

    Get PDF
    There are only a small number of ideas for stabilizing the moduli of string theory. One of the most appealing of these is the racetrack mechanism, in which a delicate interplay between two strongly interacting gauge groups fixes the value of the coupling constant. In this note, we explore this scenario. We find that quite generally, some number of discrete tunings are required in order that the mechanism yield a small gauge coupling. Even then, there is no sense in which a weak coupling approximation is valid. On the other hand, certain holomorphic quantities can be computed, so such a scheme is in principle predictive. Searching for models which realize this mechanism is thus of great interest. We also remark on cosmology in these schemes.Comment: 20 pp, latex, discussion of calculability modifie

    De Sitter Holography with a Finite Number of States

    Full text link
    We investigate the possibility that, in a combined theory of quantum mechanics and gravity, de Sitter space is described by finitely many states. The notion of observer complementarity, which states that each observer has complete but complementary information, implies that, for a single observer, the complete Hilbert space describes one side of the horizon. Observer complementarity is implemented by identifying antipodal states with outgoing states. The de Sitter group acts on S-matrix elements. Despite the fact that the de Sitter group has no nontrivial finite-dimensional unitary representations, we show that it is possible to construct an S-matrix that is finite-dimensional, unitary, and de Sitter-invariant. We present a class of examples that realize this idea holographically in terms of spinor fields on the boundary sphere. The finite dimensionality is due to Fermi statistics and an `exclusion principle' that truncates the orthonormal basis in which the spinor fields can be expanded.Comment: 23 pages, 1 eps figure, LaTe

    The Trouble with de Sitter Space

    Get PDF
    In this paper we assume the de Sitter Space version of Black Hole Complementarity which states that a single causal patch of de Sitter space is described as an isolated finite temperature cavity bounded by a horizon which allows no loss of information. We discuss the how the symmetries of de Sitter space should be implemented. Then we prove a no go theorem for implementing the symmetries if the entropy is finite. Thus we must either give up the finiteness of the de Sitter entropy or the exact symmetry of the classical space. Each has interesting implications for the very long time behavior. We argue that the lifetime of a de Sitter phase can not exceed the Poincare recurrence time. This is supported by recent results of Kachru, Kallosh, Linde and Trivedi.Comment: 15 pages, 1 figure. v2: added fifth section with comments on long time stability of de Sitter space, in which we argue that the lifetime can not exceed the Poincare recurrence time. v3: corrected a minor error in the appendi

    On the consistency of de Sitter vacua

    Get PDF
    In this paper the consistency of the de Sitter invariant α\alpha -vacua, which have been introduced as simple tools to study the effects of transplanckian physics, is investigated. In particular possible non renormalization problems are discussed, as well as non standard properties of Greens functions. We also discuss the non thermal properties of the α\alpha -vacua and the necessity of α\alpha to change. The conclusion is that non of these problems necessarily exclude an application of the α\alpha -vacua to inflation.Comment: 12 pages, v2: minor clarifications and corrections to reference

    On Thermalization in de Sitter Space

    Full text link
    We discuss thermalization in de Sitter space and argue, from two different points of view, that the typical time needed for thermalization is of order R3/lpl2R^{3}/l_{pl}^{2}, where RR is the radius of the de Sitter space in question. This time scale gives plenty of room for non-thermal deviations to survive during long periods of inflation. We also speculate in more general terms on the meaning of the time scale for finite quantum systems inside isolated boxes, and comment on the relation to the Poincar\'{e} recurrence time.Comment: 14 pages, 2 figures, latex, references added. Improved discussion in section 3 adde

    Squeezed States in the de Sitter Vacuum

    Full text link
    We discuss the treatment of squeezed states as excitations in the Euclidean vacuum of de Sitter space. A comparison with the treatment of these states as candidate no-particle states, or alpha-vacua, shows important differences already in the free theory. At the interacting level alpha-vacua are inconsistent, but squeezed state excitations seem perfectly acceptable. Indeed, matrix elements can be renormalized in the excited states using precisely the standard local counterterms of the Euclidean vacuum. Implications for inflationary scenarios in cosmology are discussed.Comment: 15 pages, no figures. One new citation in version 3; no other change

    Universality near zero virtuality

    Full text link
    In this paper we study a random matrix model with the chiral and flavor structure of the QCD Dirac operator and a temperature dependence given by the lowest Matsubara frequency. Using the supersymmetric method for random matrix theory, we obtain an exact, analytic expression for the average spectral density. In the large-n limit, the spectral density can be obtained from the solution to a cubic equation. This spectral density is non-zero in the vicinity of eigenvalue zero only for temperatures below the critical temperature of this model. Our main result is the demonstration that the microscopic limit of the spectral density is independent of temperature up to the critical temperature. This is due to a number of `miraculous' cancellations. This result provides strong support for the conjecture that the microscopic spectral density is universal. In our derivation, we emphasize the symmetries of the partition function and show that this universal behavior is closely related to the existence of an invariant saddle-point manifold.Comment: 23 pages, Late

    Theory-Motivated Benchmark Models and Superpartners at the Tevatron

    Get PDF
    Recently published benchmark models have contained rather heavy superpartners. To test the robustness of this result, several benchmark models have been constructed based on theoretically well-motivated approaches, particularly string-based ones. These include variations on anomaly and gauge-mediated models, as well as gravity mediation. The resulting spectra often have light gauginos that are produced in significant quantities at the Tevatron collider, or will be at a 500 GeV linear collider. The signatures also provide interesting challenges for the LHC. In addition, these models usually account for electroweak symmetry breaking with relatively less fine-tuning than previous benchmark models.Comment: 44 pages, 4 figures; some typos corrected. Revisions reflect published versio
    • …
    corecore