12,055 research outputs found
Modeling and analysis of the TF30-P-3 compressor system with inlet pressure distortion
Circumferential inlet distortion testing of a TF30-P-3 afterburning turbofan engine was conducted at NASA-Lewis Research Center. Pratt and Whitney Aircraft analyzed the data using its multiple segment parallel compressor model and classical compressor theory. Distortion attenuation analysis resulted in a detailed flow field calculation with good agreement between multiple segment model predictions and the test data. Sensitivity of the engine stall line to circumferential inlet distortion was calculated on the basis of parallel compressor theory to be more severe than indicated by the data. However, the calculated stall site location was in agreement with high response instrumentation measurements
A Pyramid Scheme for Particle Physics
We introduce a new model, the Pyramid Scheme, of direct mediation of SUSY
breaking, which is compatible with the idea of Cosmological SUSY Breaking
(CSB). It uses the trinification scheme of grand unification and avoids
problems with Landau poles in standard model gauge couplings. It also avoids
problems, which have recently come to light, associated with rapid stellar
cooling due to emission of the pseudo Nambu-Goldstone Boson (PNGB) of
spontaneously broken hidden sector baryon number. With a certain pattern of
R-symmetry breaking masses, a pattern more or less required by CSB, the Pyramid
Scheme leads to a dark matter candidate that decays predominantly into leptons,
with cross sections compatible with a variety of recent observations. The dark
matter particle is not a thermal WIMP but a particle with new strong
interactions, produced in the late decay of some other scalar, perhaps the
superpartner of the QCD axion, with a reheat temperature in the TeV range. This
is compatible with a variety of scenarios for baryogenesis, including some
novel ones which exploit specific features of the Pyramid Scheme.Comment: JHEP Latex, 32 pages, 1 figur
An Implication of "Gravity as the Weakest Force"
The negative specific heat of a radiating black hole is indicative of a
cataclysmic endpoint to the evaporation process. In this letter, we suggest a
simple mechanism for circumventing such a dramatic outcome. The basis for our
argument is a conjecture that was recently proposed by Arkani-Hamed and
collaborators. To put it another way, we use their notion of ``Gravity as the
Weakest Force'' as a means of inhibiting the process of black hole evaporation.Comment: 7 pages; v2 some discussion clarifie
The Number of States of Two Dimensional Critical String Theory
We discuss string theory vacua which have the wrong number of spacetime
dimensions, and give a crude argument that vacua with more than four large
dimensions are improbable. We then turn to two dimensional vacua, which naively
appear to violate Bekenstein's entropy principle. A classical analysis shows
that the naive perturbative counting of states is unjustified. All excited
states of the system have strong coupling singularities which prevent us from
concluding that they really exist. A speculative interpretation of the
classical solutions suggests only a finite number of states will be found in
regions bounded by a finite area. We also argue that the vacuum degeneracy of
two dimensional classical string theory is removed in quantum mechanics. The
system appears to be in a Kosterlitz-Thouless phase. This leads to the
conclusion that it is also improbable to have only two large spacetime
dimensions in string theory. However, we note that, unlike our argument for
high dimensions, our conclusions about the ground state have neglected two
dimensional quantum gravitational effects, and are at best incomplete.Comment: 12 pages, harvma
Nonsingular Lagrangians for Two Dimensional Black Holes
We introduce a large class of modifications of the standard lagrangian for
two dimensional dilaton gravity, whose general solutions are nonsingular black
holes. A subclass of these lagrangians have extremal solutions which are
nonsingular analogues of the extremal Reissner-Nordstrom spacetime. It is
possible that quantum deformations of these extremal solutions are the endpoint
of Hawking evaporation when the models are coupled to matter, and that the
resulting evolution may be studied entirely within the framework of the
semiclassical approximation. Numerical work to verify this conjecture is in
progress. We point out however that the solutions with non-negative mass always
contain Cauchy horizons, and may be sensitive to small perturbations.Comment: 27 pages, three figures, RU-92-61. (Replaced version contains some
corrections to incorrect equations. The zero temperature extremal geometry
(the conjectured end-point of the Hawking evaporation) is not as stated in
the previous version, but rather is a nonsingular analogue of the zero
temperature Reissner-Nordstrom space-time.
Nonsingular Black Hole Evaporation and ``Stable'' Remnants
We examine the evaporation of two--dimensional black holes, the classical
space--times of which are extended geometries, like for example the
two--dimensional section of the extremal Reissner--Nordstrom black hole. We
find that the evaporation in two particular models proceeds to a stable
end--point. This should represent the generic behavior of a certain class of
two--dimensional dilaton--gravity models. There are two distinct regimes
depending on whether the back--reaction is weak or strong in a certain sense.
When the back--reaction is weak, evaporation proceeds via an adiabatic
evolution, whereas for strong back--reaction, the decay proceeds in a somewhat
surprising manner. Although information loss is inevitable in these models at
the semi--classical level, it is rather benign, in that the information is
stored in another asymptotic region.Comment: 23 pages, 6 figures, harvmac and epsf, RU-93-12, PUPT-1399,
NSF-ITP-93-5
Entropy of gravitating systems: scaling laws versus radial profiles
Through the consideration of spherically symmetric gravitating systems
consisting of perfect fluids with linear equation of state constrained to be in
a finite volume, an account is given of the properties of entropy at conditions
in which it is no longer an extensive quantity (it does not scale with system's
size). To accomplish this, the methods introduced by Oppenheim [1] to
characterize non-extensivity are used, suitably generalized to the case of
gravitating systems subject to an external pressure. In particular when, far
from the system's Schwarzschild limit, both area scaling for conventional
entropy and inverse radius law for the temperature set in (i.e. the same
properties of the corresponding black hole thermodynamical quantities), the
entropy profile is found to behave like 1/r, being r the area radius inside the
system. In such circumstances thus entropy heavily resides in internal layers,
in opposition to what happens when area scaling is gained while approaching the
Schwarzschild mass, in which case conventional entropy lies at the surface of
the system. The information content of these systems, even if it globally
scales like the area, is then stored in the whole volume, instead of packed on
the boundary.Comment: 16 pages, 11 figures. v2: addition of some references; the stability
of equilibrium configurations is readdresse
Black Hole Remnants and the Information Puzzle
Magnetically charged dilatonic black holes have a perturbatively infinite
ground state degeneracy associated with an infinite volume throat region of the
geometry. A simple argument based on causality is given that these states do
not have a description as ordinary massive particles in a low-energy effective
field theory. Pair production of magnetic black holes in a weak magnetic field
is estimated in a weakly-coupled semiclassical expansion about an instanton and
found to be finite, despite the infinite degeneracy of states. This suggests
that these states may store the information apparently lost in black hole
scattering processes.Comment: 16 pages, revision has 5 figures uuencode
- …