12,055 research outputs found

    Modeling and analysis of the TF30-P-3 compressor system with inlet pressure distortion

    Get PDF
    Circumferential inlet distortion testing of a TF30-P-3 afterburning turbofan engine was conducted at NASA-Lewis Research Center. Pratt and Whitney Aircraft analyzed the data using its multiple segment parallel compressor model and classical compressor theory. Distortion attenuation analysis resulted in a detailed flow field calculation with good agreement between multiple segment model predictions and the test data. Sensitivity of the engine stall line to circumferential inlet distortion was calculated on the basis of parallel compressor theory to be more severe than indicated by the data. However, the calculated stall site location was in agreement with high response instrumentation measurements

    A Pyramid Scheme for Particle Physics

    Full text link
    We introduce a new model, the Pyramid Scheme, of direct mediation of SUSY breaking, which is compatible with the idea of Cosmological SUSY Breaking (CSB). It uses the trinification scheme of grand unification and avoids problems with Landau poles in standard model gauge couplings. It also avoids problems, which have recently come to light, associated with rapid stellar cooling due to emission of the pseudo Nambu-Goldstone Boson (PNGB) of spontaneously broken hidden sector baryon number. With a certain pattern of R-symmetry breaking masses, a pattern more or less required by CSB, the Pyramid Scheme leads to a dark matter candidate that decays predominantly into leptons, with cross sections compatible with a variety of recent observations. The dark matter particle is not a thermal WIMP but a particle with new strong interactions, produced in the late decay of some other scalar, perhaps the superpartner of the QCD axion, with a reheat temperature in the TeV range. This is compatible with a variety of scenarios for baryogenesis, including some novel ones which exploit specific features of the Pyramid Scheme.Comment: JHEP Latex, 32 pages, 1 figur

    An Implication of "Gravity as the Weakest Force"

    Get PDF
    The negative specific heat of a radiating black hole is indicative of a cataclysmic endpoint to the evaporation process. In this letter, we suggest a simple mechanism for circumventing such a dramatic outcome. The basis for our argument is a conjecture that was recently proposed by Arkani-Hamed and collaborators. To put it another way, we use their notion of ``Gravity as the Weakest Force'' as a means of inhibiting the process of black hole evaporation.Comment: 7 pages; v2 some discussion clarifie

    The Number of States of Two Dimensional Critical String Theory

    Get PDF
    We discuss string theory vacua which have the wrong number of spacetime dimensions, and give a crude argument that vacua with more than four large dimensions are improbable. We then turn to two dimensional vacua, which naively appear to violate Bekenstein's entropy principle. A classical analysis shows that the naive perturbative counting of states is unjustified. All excited states of the system have strong coupling singularities which prevent us from concluding that they really exist. A speculative interpretation of the classical solutions suggests only a finite number of states will be found in regions bounded by a finite area. We also argue that the vacuum degeneracy of two dimensional classical string theory is removed in quantum mechanics. The system appears to be in a Kosterlitz-Thouless phase. This leads to the conclusion that it is also improbable to have only two large spacetime dimensions in string theory. However, we note that, unlike our argument for high dimensions, our conclusions about the ground state have neglected two dimensional quantum gravitational effects, and are at best incomplete.Comment: 12 pages, harvma

    Nonsingular Lagrangians for Two Dimensional Black Holes

    Get PDF
    We introduce a large class of modifications of the standard lagrangian for two dimensional dilaton gravity, whose general solutions are nonsingular black holes. A subclass of these lagrangians have extremal solutions which are nonsingular analogues of the extremal Reissner-Nordstrom spacetime. It is possible that quantum deformations of these extremal solutions are the endpoint of Hawking evaporation when the models are coupled to matter, and that the resulting evolution may be studied entirely within the framework of the semiclassical approximation. Numerical work to verify this conjecture is in progress. We point out however that the solutions with non-negative mass always contain Cauchy horizons, and may be sensitive to small perturbations.Comment: 27 pages, three figures, RU-92-61. (Replaced version contains some corrections to incorrect equations. The zero temperature extremal geometry (the conjectured end-point of the Hawking evaporation) is not as stated in the previous version, but rather is a nonsingular analogue of the zero temperature M2=Q2M^2 = Q^2 Reissner-Nordstrom space-time.

    Nonsingular Black Hole Evaporation and ``Stable'' Remnants

    Get PDF
    We examine the evaporation of two--dimensional black holes, the classical space--times of which are extended geometries, like for example the two--dimensional section of the extremal Reissner--Nordstrom black hole. We find that the evaporation in two particular models proceeds to a stable end--point. This should represent the generic behavior of a certain class of two--dimensional dilaton--gravity models. There are two distinct regimes depending on whether the back--reaction is weak or strong in a certain sense. When the back--reaction is weak, evaporation proceeds via an adiabatic evolution, whereas for strong back--reaction, the decay proceeds in a somewhat surprising manner. Although information loss is inevitable in these models at the semi--classical level, it is rather benign, in that the information is stored in another asymptotic region.Comment: 23 pages, 6 figures, harvmac and epsf, RU-93-12, PUPT-1399, NSF-ITP-93-5

    Entropy of gravitating systems: scaling laws versus radial profiles

    Get PDF
    Through the consideration of spherically symmetric gravitating systems consisting of perfect fluids with linear equation of state constrained to be in a finite volume, an account is given of the properties of entropy at conditions in which it is no longer an extensive quantity (it does not scale with system's size). To accomplish this, the methods introduced by Oppenheim [1] to characterize non-extensivity are used, suitably generalized to the case of gravitating systems subject to an external pressure. In particular when, far from the system's Schwarzschild limit, both area scaling for conventional entropy and inverse radius law for the temperature set in (i.e. the same properties of the corresponding black hole thermodynamical quantities), the entropy profile is found to behave like 1/r, being r the area radius inside the system. In such circumstances thus entropy heavily resides in internal layers, in opposition to what happens when area scaling is gained while approaching the Schwarzschild mass, in which case conventional entropy lies at the surface of the system. The information content of these systems, even if it globally scales like the area, is then stored in the whole volume, instead of packed on the boundary.Comment: 16 pages, 11 figures. v2: addition of some references; the stability of equilibrium configurations is readdresse

    Black Hole Remnants and the Information Puzzle

    Full text link
    Magnetically charged dilatonic black holes have a perturbatively infinite ground state degeneracy associated with an infinite volume throat region of the geometry. A simple argument based on causality is given that these states do not have a description as ordinary massive particles in a low-energy effective field theory. Pair production of magnetic black holes in a weak magnetic field is estimated in a weakly-coupled semiclassical expansion about an instanton and found to be finite, despite the infinite degeneracy of states. This suggests that these states may store the information apparently lost in black hole scattering processes.Comment: 16 pages, revision has 5 figures uuencode
    • …
    corecore