429 research outputs found

    Supersymmetry, Axions and Cosmology

    Full text link
    Various authors have noted that in particular models, the upper bound on the axion decay constant may not hold. We point out that within supersymmetry, this is a generic issue. For large decay constants, the cosmological problems associated with the axion's scalar partner are far more severe than those of the axion. We survey a variety of models, both for the axion multiplet and for cosmology, and find that in many cases where the cosmological problems of the saxion are solved, the usual upper bound on the axion is significantly relaxed. We discuss, more generally, the cosmological issues raised by the pseudoscalar members of moduli multiplets, and find that they are potentially quite severe.Comment: 27 pages, published version, some discussions clarifie

    Superficial geology and hydrogeological domains between Durham and Darlington. Phase 1, (Durham South)

    Get PDF
    The North East Region’s Groundwater Modelling Strategy has identified the need for the development of a conceptual model for the Magnesian Limestone aquifer. In line with the Environment Agency R&D Technical Report W214 (Environment Agency Framework for Groundwater Resources Conceptual and Numerical Modelling), a scoping study was produced, that identified areas of uncertainty and work required for the development of the conceptual model. The purpose of this project is to give the Environment Agency (EA) a regional understanding of the geology and hydrogeology of the Magnesian Limestone and overlying superficial deposits in the North East Region, using information presently held by the British Geological Survey (BGS). This report contributes to the conceptual model and understanding of the Magnesian Limestone aquifer. There is uncertainty in the amount of recharge that the Magnesian Limestone receives from rainfall. The project is designed to gain a greater understanding of the geology of the superficial deposits and their hydrogeological properties. These are the key factors for the calculation of recharge to the Magnesian Limestone aquifer from rainfall. This element of the conceptual model is essential in understanding the potential water resource available within this aquifer

    Superficial geology and hydrogeological domains between Durham and Darlington. Phase 2, (Durham North)

    Get PDF
    The North East Region’s Groundwater Modelling Strategy has identified the need for the development of a conceptual model for the Magnesian Limestone aquifer. In line with the Environment Agency R&D Technical Report W214 (Environment Agency Framework for Groundwater Resources Conceptual and Numerical Modelling), a scoping study was produced, that identified areas of uncertainty and work required for the development of the conceptual model. The purpose of this project is to give the Environment Agency (EA) a regional understanding of the geology and hydrogeology of the Magnesian Limestone and overlying superficial deposits in the North East Region, using information held by the British Geological Survey (BGS). This report contributes to the conceptual model and understanding of the Magnesian Limestone aquifer. There is uncertainty in the amount of recharge that the Magnesian Limestone receives from rainfall. The project is designed to gain a greater understanding of the geology of the superficial deposits and their hydrogeological properties. These are the key factors for the calculation of recharge to the Magnesian Limestone aquifer from rainfall. This element of the conceptual model is essential in understanding the potential water resource available within this aquifer

    Inflationary cosmology in the central region of String/M-theory moduli space

    Full text link
    The "central" region of moduli space of M- and string theories is where the string coupling is about unity and the volume of compact dimensions is about the string volume. Here we argue that in this region the non-perturbative potential which is suggested by membrane instanton effects has the correct scaling and shape to allow for enough slow-roll inflation, and to produce the correct amplitude of CMB anisotropies. Thus, the well known theoretical obstacles for achieving viable slow-roll inflation in the framework of perturbative string theory are overcome. Limited knowledge of some generic properties of the induced potential is sufficient to determine the simplest type of consistent inflationary model and its predictions about the spectrum of cosmic microwave background anisotropies: a red spectrum of scalar perturbations, and negligible amount of tensor perturbations.Comment: 9 pages, 1 figur

    Natural Warm Inflation

    Full text link
    We derive the requirements that a generic axion-like field has to satisfy in order to play the role of the inflaton field in the warm inflation scenario. Compared to the parameter space in ordinary natural inflation models, we find that the parameter space in our model is enlarged. In particular, we avoid the problem of having an axion decay constant ff that relates to the Planck scale, which is instead present in the ordinary natural inflation models; in fact, our model can easily accommodate values of the axion decay constant that lie well below the Planck scale.Comment: 19 pages, 7 figures; version accepted in JCA

    From Big Crunch to Big Bang

    Get PDF
    We consider conditions under which a universe contracting towards a big crunch can make a transition to an expanding big bang universe. A promising example is 11-dimensional M-theory in which the eleventh dimension collapses, bounces, and re-expands. At the bounce, the model can reduce to a weakly coupled heterotic string theory and, we conjecture, it may be possible to follow the transition from contraction to expansion. The possibility opens the door to new classes of cosmological models. For example, we discuss how it suggests a major simplification and modification of the recently proposed ekpyrotic scenario.Comment: 16 pages, compressed and RevTex file, including three postscript figure files. Minor changes, version to appear in Physical Review

    Suppressing the ÎĽ\mu and neutrino masses by a superconformal force

    Get PDF
    The idea of Nelson and Strassler to obtain a power law suppression of parameters by a superconformal force is applied to understand the smallness of the ÎĽ\mu parameter and neutrino masses in R-parity violating supersymmetric standard models. We find that the low-energy sector should contain at least another pair of Higgs doublets, and that a suppression of \lsim O(10^{-13}) for the ÎĽ\mu parameter and neutrino masses can be achieved generically. The superpotential of the low-energy sector happens to possess an anomaly-free discrete R-symmetry, either R3R_3 or R6R_6, which naturally suppresses certain lepton-flavor violating processes, the neutrinoless double beta decays and also the electron electric dipole moment. We expect that the escape energy of the superconformal sector is \lsim O(10) TeV so that this sector will be observable at LHC. Our models can accommodate to a large mixing among neutrinos and give the same upper bound of the lightest Higgs mass as the minimal supersymmetric standard model.Comment: 24 page

    Mutated Hilltop Inflation : A Natural Choice for Early Universe

    Full text link
    We propose a model of inflation with a suitable potential for a single scalar field which falls in the wide class of hilltop inflation. We derive the analytical expressions for most of the physical quantities related to inflation and show that all of them represent the true behavior as required from a model of inflation. We further subject the results to observational verification by formulating the theory of perturbations based on our model followed by an estimation for the values of those observable parameters. Our model is found to be in excellent agreement with observational data. Thus, the features related to the model leads us to infer that this type of hilltop inflation may be a natural choice for explaining the early universe.Comment: 22 pages, 7 figures, 2 tables. Matches published version in JCA

    Relating the Cosmological Constant and Supersymmetry Breaking in Warped Compactifications of IIB String Theory

    Get PDF
    It has been suggested that the observed value of the cosmological constant is related to the supersymmetry breaking scale M_{susy} through the formula Lambda \sim M_p^4 (M_{susy}/M_p)^8. We point out that a similar relation naturally arises in the codimension two solutions of warped space-time varying compactifications of string theory in which non-isotropic stringy moduli induce a small but positive cosmological constant.Comment: 7 pages, LaTeX, references added and minor changes made, (v3) map between deSitter and global cosmic brane solutions clarified, supersymmetry breaking discussion improved and references adde

    Gauge coupling unification with large extra dimensions

    Get PDF
    We make a detailed study of the unification of gauge couplings in the MSSM with large extra dimensions. We find some scenarios where unification can be achieved (with the strong coupling constant at the Z mass within one standard deviation of the experimental value) with both the compactification scale and the SUSY breaking scale in the few TeV range. No enlargement of the gauge group or particle content is needed. One particularly interesting scenario is when the SUSY breaking scale is larger than the compactification scale, but both are small enough to be probed at the CERN LHC. Unification in two scales scenarios is also investigated and found to give results within the LHC.Comment: 17 pages, 3 figures, some discussions added, few additional references included. Version to appear in Phys. Rev.
    • …
    corecore