668 research outputs found

    Book Reviews

    Get PDF

    Entropy of Anisotropic Universe and Fractional Branes

    Get PDF
    We obtain the entropy of a homogeneous anisotropic universe applicable, by assumption, to the fractional branes in the universe in the model of Chowdhury and Mathur. The entropy for the 3 or 4 charge fractional branes thus obtained is not of the expected form E^{{3/2}} or E^2. One way the expected form is realised is if p \to \rho for the transverse directions and if the compact directions remain constant in size. These conditions are likely to be enforced by brane decay and annihilation, and by the S, T, U dualities. T duality is also likely to exclude high entropic cases, found in the examples, which arise due to the compact space contracting to zero size. Then the 4 charge fractional branes may indeed provide a detailed realisation of the maximum entropic principle we proposed recently to determine the number (3 + 1) of large spacetime dimensions.Comment: Version 2: 21 pages. More discussion and references added. To appear in General Relativity and Gravitatio

    Field theory models for variable cosmological constant

    Get PDF
    Anthropic solutions to the cosmological constant problem require seemingly unnatural scalar field potentials with a very small slope or domain walls (branes) with a very small coupling to a four-form field. Here we introduce a class of models in which the smallness of the corresponding parameters can be attributed to a spontaneously broken discrete symmetry. We also demonstrate the equivalence of scalar field and four-form models. Finally, we show how our models can be naturally embedded into a left-right extension of the standard model.Comment: A reference adde

    SirT1 Gain of Function Increases Energy Efficiency and Prevents Diabetes in Mice

    Get PDF
    SummaryIn yeast, worms, and flies, an extra copy of the gene encoding the Sirtuin Sir2 increases metabolic efficiency, as does administration of polyphenols like resveratrol, thought to act through Sirtuins. But evidence that Sirtuin gain of function results in increased metabolic efficiency in mammals is limited. We generated transgenic mice with moderate overexpression of SirT1, designed to mimic the Sirtuin gain of function that improves metabolism in C. elegans. These mice exhibit normal insulin sensitivity but decreased food intake and locomotor activity, resulting in decreased energy expenditure. However, in various models of insulin resistance and diabetes, SirT1 transgenics display improved glucose tolerance due to decreased hepatic glucose production and increased adiponectin levels, without changes in body weight or composition. We conclude that SirT1 gain of function primes the organism for metabolic adaptation to insulin resistance, increasing hepatic insulin sensitivity and decreasing whole-body energy requirements. These findings have important implications for Sirtuin-based therapies in humans

    Effect of Zero Modes on the Bound-State Spectrum in Light-Cone Quantisation

    Full text link
    We study the role of bosonic zero modes in light-cone quantisation on the invariant mass spectrum for the simplified setting of two-dimensional SU(2) Yang-Mills theory coupled to massive scalar adjoint matter. Specifically, we use discretised light-cone quantisation where the momentum modes become discrete. Two types of zero momentum mode appear -- constrained and dynamical zero modes. In fact only the latter type of modes turn out to mix with the Fock vacuum. Omission of the constrained modes leads to the dynamical zero modes being controlled by an infinite square-well potential. We find that taking into account the wavefunctions for these modes in the computation of the full bound state spectrum of the two dimensional theory leads to 21% shifts in the masses of the lowest lying states.Comment: LaTeX with 5 postscript file

    The enigmatic multiple star VV Ori

    Full text link
    New photometry, including TESS data, have been combined with recent spectroscopic observations of the Orion Ib pulsating triple-star system VV Ori. This yields a revised set of absolute parameters with increased precision. Two different programs were utilized for the light curve analysis, with results in predictably close agreement. The agreement promotes confidence in the analysis procedures. The spectra were analysed using the {\sc FDBinary} program. The main parameters are as follows: M1=11.6±0.14M_1 = 11.6 \pm 0.14 and M2=4.8±0.06M_2 = 4.8 \pm 0.06 (M⊙_\odot). We estimate an approximate mass of the wide companion as M3=2.0±0.3M_3 = 2.0 \pm 0.3 M⊙_\odot. Similarly, R1=5.11±0.03R_{1} = 5.11 \pm 0.03, R2=2.51±0.02R_2 = 2.51 \pm 0.02, R3=1.8±0.1R_3 = 1.8 \pm 0.1 (R⊙_\odot); Te1=26600±300T_{\rm e 1} = 26600 \pm 300, Te2=16300±400T_{\rm e 2} = 16300 \pm 400 and Te3=10000±1000T_{\rm e 3} = 10000 \pm 1000 (K). The close binary's orbital separation is a=13.91a= 13.91 (R⊙_\odot); its age is 8±28 \pm 2 (Myr) and its photometric distance is 396±7396 \pm 7 pc. The primary's β\beta Cep type oscillations support these properties and confirm our understanding of its evolutionary status. Examination of the well-defined λ\lambda6678 He I profiles reveals the primary to have a significantly low projected rotation: some 80\% of the synchronous value. This can be explained on the basis of the precession of an unaligned spin axis. This proposal can resolve also observed variations of the apparent inclination and address other longer-term irregularities of the system reported in the literature. This topic invites further observations and follow-up theoretical study of the dynamics of this intriguing young multiple star.Comment: 17 pages, 15 figures, 14 tables, accepted by MNRA

    Beauty is Attractive: Moduli Trapping at Enhanced Symmetry Points

    Full text link
    We study quantum effects on moduli dynamics arising from the production of particles which are light at special points in moduli space. The resulting forces trap the moduli at these points, which often exhibit enhanced symmetry. Moduli trapping occurs in time-dependent quantum field theory, as well as in systems of moving D-branes, where it leads the branes to combine into stacks. Trapping also occurs in an expanding universe, though the range over which the moduli can roll is limited by Hubble friction. We observe that a scalar field trapped on a steep potential can induce a stage of acceleration of the universe, which we call trapped inflation. Moduli trapping ameliorates the cosmological moduli problem and may affect vacuum selection. In particular, rolling moduli are most powerfully attracted to the points with the largest number of light particles, which are often the points of greatest symmetry. Given suitable assumptions about the dynamics of the very early universe, this effect might help to explain why among the plethora of possible vacuum states of string theory, we appear to live in one with a large number of light particles and (spontaneously broken) symmetries. In other words, some of the surprising properties of our world might arise not through pure chance or miraculous cancellations, but through a natural selection mechanism during dynamical evolution.Comment: 50 pages, 4 figures; v2: added references and an appendix describing a related classical proces

    String Theory and Inflation

    Full text link
    String theory abounds with light scalar fields (the dilaton and various moduli) which create a host of observational problems, and notably some serious cosmological difficulties similar to the ones associated with the Polonyi field in the earliest versions of spontaneously broken supergravity. We show that all these problems are naturally avoided if a recently introduced mechanism for fixing the vacuum expectation values of the dilaton and/or moduli is at work. We study both the classical evolution and the quantum fluctuations of such scalar fields during a primordial inflationary era and find that the results are naturally compatible with observational facts. In this model, dilatons or moduli within a very wide range of masses (which includes the SUSY-breaking favored 1 TeV value and extends up to the Planck scale) qualify to define a novel type of essentially stable ultra-weakly interacting massive particles able to provide enough mass density to close the universeComment: 25 page

    Nano-particle delivery of brain derived neurotrophic factor after focal cerebral ischemia reduces tissue injury and enhances behavioral recovery

    Get PDF
    Low levels of brain-derived neurotrophic factor (BDNF) are linked to delayed neurological recovery, depression, and cognitive impairment following stroke. Supplementation with BDNF reverses these effects. Unfortunately, systemically administered BDNF in its native form has minimal therapeutic value due to its poor blood brain barrier permeability and short serum half-life. In this study, a novel nano-particle polyion complex formulation of BDNF (nano-BDNF) was administered to mice after experimental ischemic stroke
    • …
    corecore