43 research outputs found

    Prevalence and psychopathological characteristics of depression in consecutive otorhinolaryngologic inpatients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High prevalence of depression has been reported in otorhinolaryngologic patients (ORL). However, studies using a semi-structured interview to determine the prevalence of depression in ORL are lacking. Therefore the present study sought to determine the depression prevalence in ORL applying a semi-structured diagnostic interview and to further characterize the pathopsychological and demographic characteristics of depression in these patients.</p> <p>Methods</p> <p>One-hundred inpatients of the otorhinolaryngologic department of a German university hospital participated voluntarily (age M = 38.8 years, SD = 13.9; 38.0% female). Depression was assessed using a clinical interview in which the International Diagnostic Checklist for depression (IDCL) was applied. Patients completed the Brief Symptom Inventory (BSI) which constitutes three composite scores and nine symptom scales and the Beck Depression Inventory (BDI). Multivariate analyses of variance, correlations and effect sizes were conducted.</p> <p>Results</p> <p>A prevalence of depression of 21.0% was determined, 38.0% of the depressed patients were female. Depressed patients showed higher scores on the BSI-scales "interpersonal sensitivity", "depression", "anxiety", "phobic anxiety" and "psychoticism" with medium effect sizes.</p> <p>Conclusions</p> <p>High prevalence of depression was found which is in accordance with results of prior studies. Depressed patients showed higher psychological distress as compared to non-depressed patients. The results call for carrying on in engaging in depression research and routine depression screening in ORL.</p

    Conservation and divergence of known apicomplexan transcriptional regulons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The apicomplexans are a diverse phylum of parasites causing an assortment of diseases including malaria in a wide variety of animals and lymphoproliferation in cattle. Little is known about how these varied parasites regulate their transcriptional regulons. Even less is known about how regulon systems, consisting of transcription factors and target genes together with their associated biological process, evolve in these diverse parasites.</p> <p>Results</p> <p>In order to obtain insights into the differences in transcriptional regulation between these parasites we compared the orthology profiles of putative malaria transcription factors across species and examined the enrichment patterns of four binding sites across eleven apicomplexans.</p> <p>About three-fifths of the factors are broadly conserved in several phylogenetic orders of sequenced apicomplexans. This observation suggests the existence of regulons whose regulation is conserved across this ancient phylum. Transcription factors not broadly conserved across the phylum are possibly involved in regulon systems that have diverged between species. Examining binding site enrichment patterns in light of transcription factor conservation patterns suggests a second mode via which regulon systems may diverge - rewiring of existing transcription factors and their associated binding sites in specific ways. Integrating binding sites with transcription factor conservation patterns also facilitated prediction of putative regulators for one of the binding sites.</p> <p>Conclusions</p> <p>Even though transcription factors are underrepresented in apicomplexans, the distribution of these factors and their associated regulons reflect common and family-specific transcriptional regulatory processes.</p

    A review of bronchiolitis obliterans syndrome and therapeutic strategies

    Get PDF
    Lung transplantation is an important treatment option for patients with advanced lung disease. Survival rates for lung transplant recipients have improved; however, the major obstacle limiting better survival is bronchiolitis obliterans syndrome (BOS). In the last decade, survival after lung retransplantation has improved for transplant recipients with BOS. This manuscript reviews BOS along with the current therapeutic strategies, including recent outcomes for lung retransplantation

    Characterization of Epstein-Barr Virus miRNAome in Nasopharyngeal Carcinoma by Deep Sequencing

    Get PDF
    Virus-encoded microRNAs (miRNAs) have been shown to regulate a variety of biological processes involved in viral infection and viral-associated pathogenesis. Epstein-Barr virus (EBV) is a herpesvirus implicated in nasopharyngeal carcinoma (NPC) and other human malignancies. EBV-encoded miRNAs were among the first group of viral miRNAs identified. To understand the roles of EBV miRNAs in the pathogenesis of NPC, we utilized deep sequencing technology to characterize the EBV miRNA transcriptome in clinical NPC tissues. We obtained more than 110,000 sequence reads in NPC samples and identified 44 EBV BART miRNAs, including four new mature miRNAs derived from previously identified BART miRNA precursor hairpins. Further analysis revealed extensive sequence variations (isomiRs) of EBV miRNAs, including terminal isomiRs at both the 5′ and 3′ ends and nucleotide variants. Analysis of EBV genomic sequences indicated that the majority of EBV miRNA nucleotide variants resulted from post-transcriptional modifications. Read counts of individual EBV miRNA in NPC tissue spanned from a few reads to approximately 18,000 reads, confirming the wide expression range of EBV miRNAs. Several EBV miRNAs were expressed at levels similar to highly abundant human miRNAs. Sequence analysis revealed that most of the highly abundant EBV miRNAs share their seed sequences (nucleotides 2–7) with human miRNAs, suggesting that seed sequence content may be an important factor underlying the differential accumulation of BART miRNAs. Interestingly, many of these human miRNAs have been found to be dysregulated in human malignancies, including NPC. These observations not only provide a potential linkage between EBV miRNAs and human malignancy but also suggest a highly coordinated mechanism through which EBV miRNAs may mimic or compete with human miRNAs to affect cellular functions

    Identification of Intracellular and Plasma Membrane Calcium Channel Homologues in Pathogenic Parasites

    Get PDF
    Ca2+ channels regulate many crucial processes within cells and their abnormal activity can be damaging to cell survival, suggesting that they might represent attractive therapeutic targets in pathogenic organisms. Parasitic diseases such as malaria, leishmaniasis, trypanosomiasis and schistosomiasis are responsible for millions of deaths each year worldwide. The genomes of many pathogenic parasites have recently been sequenced, opening the way for rational design of targeted therapies. We analyzed genomes of pathogenic protozoan parasites as well as the genome of Schistosoma mansoni, and show the existence within them of genes encoding homologues of mammalian intracellular Ca2+ release channels: inositol 1,4,5-trisphosphate receptors (IP3Rs), ryanodine receptors (RyRs), two-pore Ca2+ channels (TPCs) and intracellular transient receptor potential (Trp) channels. The genomes of Trypanosoma, Leishmania and S. mansoni parasites encode IP3R/RyR and Trp channel homologues, and that of S. mansoni additionally encodes a TPC homologue. In contrast, apicomplexan parasites lack genes encoding IP3R/RyR homologues and possess only genes encoding TPC and Trp channel homologues (Toxoplasma gondii) or Trp channel homologues alone. The genomes of parasites also encode homologues of mammalian Ca2+ influx channels, including voltage-gated Ca2+ channels and plasma membrane Trp channels. The genome of S. mansoni also encodes Orai Ca2+ channel and STIM Ca2+ sensor homologues, suggesting that store-operated Ca2+ entry may occur in this parasite. Many anti-parasitic agents alter parasite Ca2+ homeostasis and some are known modulators of mammalian Ca2+ channels, suggesting that parasite Ca2+ channel homologues might be the targets of some current anti-parasitic drugs. Differences between human and parasite Ca2+ channels suggest that pathogen-specific targeting of these channels may be an attractive therapeutic prospect

    Idiopathic pulmonary fibrosis is strongly associated with productive infection by herpesvirus saimiri

    Get PDF
    Idiopathic pulmonary fibrosis is a fatal disease without effective therapy or diagnostic test. To investigate a potential role for c�herpesviruses in this disease, 21 paraffin-embedded lung biopsies from patients diagnosed with idiopathic pulmonary fibrosis and 21 lung biopsies from age-matched controls with pulmonary fibrosis of known etiology were examined for a series of c�herpesviruses’ DNA/RNA and related proteins using in situ hybridization and reverse transcriptase-polymerase chain reaction (RT-PCR)-based methods. We detected four proteins known to be in the genome of several c�herpesviruses (cyclin D, thymidylate synthase, dihydrofolate reductase, and interleukin-17) that were strongly co-expressed in the regenerating epithelial cells of each of the 21 idiopathic pulmonary fibrosis cases and not in the benign epithelia of the controls. Among the c� herpesviruses, only herpesvirus saimiri expresses all four of these ‘pirated’ mammalian proteins. We found herpesvirus saimiri DNA in the regenerating epithelial cells of 21/21 idiopathic pulmonary fibrosis cases using four separate probe sets but not in the 21 controls. RT-PCR showed that the source of the cyclin D RNA in active idiopathic pulmonary fibrosis was herpesvirus saimiri and not human. We cloned and sequenced part of genome corresponding to the DNA polymerase herpesvirus saimiri gene from an idiopathic pulmonary fibrosis sample and it matched 100% with the published viral sequence. These data are consistent with idiopathic pulmonary fibrosis representing herpesvirus saimiri-induced pulmonary fibrosis. Thus, treatment directed against viral proliferation and/or viral-associated proteins may halt disease progression. Further, demonstration of the viral nucleic acids or proteins may help diagnose the disease

    Sequence analysis of Raji Epstein-Barr virus DNA

    No full text
    The DNA sequence of the EcoRI Dhet and part of the BamHI E fragments of Raji EBV has been determined. Precise locations of two deletions in Raji DNA have been identified and their consequences for gene structure evaluated. The deletion in Raji of reading frames BALF1, BARF1, and BZLF2 and truncation of BALF2 and BERF5 probably account for the replication defect in this strain. The degree of sequence variation between B95-8 and Raji has been examined and shows considerable variation between genes. The latent membrane protein gene is exceptionally polymorphic and the initiator methionine for the late productive cycle protein overlapping the latent membrane protein is absent in Raji. © 1988

    Identification and DNA Sequence Analysis of the fixX Gene of R. leguminosarum bv. Viciae

    No full text

    Microdissection molecular copy-number counting (microMCC)--unlocking cancer archives with digital PCR.

    No full text
    Most cancer genomes are characterized by the gain or loss of copies of some sequences through deletion, amplification or unbalanced translocations. Delineating and quantifying these changes is important in understanding the initiation and progression of cancer, in identifying novel therapeutic targets, and in the diagnosis and prognosis of individual patients. Conventional methods for measuring copy-number are limited in their ability to analyse large numbers of loci, in their dynamic range and accuracy, or in their ability to analyse small or degraded samples. This latter limitation makes it difficult to access the wealth of fixed, archived material present in clinical collections, and also impairs our ability to analyse small numbers of selected cells from biopsies. Molecular copy-number counting (MCC), a digital PCR technique, has been used to delineate a non-reciprocal translocation using good quality DNA from a renal carcinoma cell line. We now demonstrate microMCC, an adaptation of MCC which allows the precise assessment of copy number variation over a significant dynamic range, in template DNA extracted from formalin-fixed paraffin-embedded clinical biopsies. Further, microMCC can accurately measure copy number variation at multiple loci, even when applied to picogram quantities of grossly degraded DNA extracted after laser capture microdissection of fixed specimens. Finally, we demonstrate the power of microMCC to precisely interrogate cancer genomes, in a way not currently feasible with other methodologies, by defining the position of a junction between an amplified and non-amplified genomic segment in a bronchial carcinoma. This has tremendous potential for the exploitation of archived resources for high-resolution targeted cancer genomics and in the future for interrogating multiple loci in cancer diagnostics or prognostics
    corecore