42 research outputs found

    Native-like aggregates of Factor VIII (FVIII) are immunogenic von Willebrand Factor deficient and hemophilia A mice

    Get PDF
    The administration of recombinant Factor VIII (FVIII) is the first line therapy for Hemophilia A (HA), but 25–35% of patients develop an inhibitory antibody response. In general, the presence of aggregates contributes to unwanted immunogenic responses against therapeutic proteins. FVIII has been shown to form both native-like and non-native aggregates. Previously, we showed that non-native aggregates of FVIII are less immunogenic compared to the native protein. Here we investigated the effect of native-like aggregates of FVIII on immunogenicity in HA and von Willebrand Factor knockout (vWF−/−) mice. Mice immunized with native-like aggregates showed significantly higher inhibitory antibody titers compared to animals that received native FVIII. Following re-stimulation in vitro with native FVIII, the activation of CD4+ T cells isolated from mice immunized with native-like aggregates is ~4 fold higher than mice immunized with the native protein. Furthermore, this is associated with increases in the secretion of pro-inflammatory cytokines IL-6 and IL-17 in the native-like aggregate treatment group. The results indicate that the native-like aggregates of FVIII are more immunogenic than native FVIII for both the B cell and T cell responses

    Preclinical evaluation of cancer immune therapy using patient-derived tumor antigen-specific T cells in a novel xenograft platform.

    Get PDF
    Objectives: With a rapidly growing list of candidate immune-based cancer therapeutics, there is a critical need to generate highly reliable animal models to preclinically evaluate the efficacy of emerging immune-based therapies, facilitating successful clinical translation. Our aim was to design and validate a novel Methods: Tumor xenografts are established rapidly in the greater omentum of globally immunodeficient NOD- Results: The tumors progress rapidly and disseminate in the mice unless patient-derived tumor-specific T cells are introduced. An initial T cell-mediated tumor arrest is later followed by a tumor escape, which correlates with the upregulation of the checkpoint molecules programmed cell death-1 (PD-1) and lymphocyte-activation gene 3 (LAG3) on T cells. Treatment with immune-based therapies that target these checkpoints, such as anti-PD-1 antibody (nivolumab) or interleukin-12 (IL-12), prevented or delayed the tumor escape. Furthermore, IL-12 treatment suppressed PD-1 and LAG3 upregulation on T cells. Conclusion: Together, these results validate the X-mouse model and establish its potential to preclinically evaluate the therapeutic efficacy of immune-based therapies

    Novel phosphatidylserine-binding molecule enhances antitumor T-cell responses by targeting immunosuppressive exosomes in human tumor microenvironments.

    Get PDF
    BACKGROUND: The human tumor microenvironment (TME) is a complex and dynamic milieu of diverse acellular and cellular components, creating an immunosuppressive environment, which contributes to tumor progression. We have previously shown that phosphatidylserine (PS) expressed on the surface of exosomes isolated from human TMEs is causally linked to T-cell immunosuppression, representing a potential immunotherapeutic target. In this study, we investigated the effect of ExoBlock, a novel PS-binding molecule, on T-cell responses in the TME. METHODS: We designed and synthesized a new compound, (ZnDPA) RESULTS: ExoBlock was able to bind PS with high avidity and was found to consistently and significantly block the immunosuppressive activity of human ovarian tumor and melanoma-associated exosomes in vitro. ExoBlock was also able to significantly enhance T cell-mediated tumor suppression in vivo in both the X-mouse and the OTX model. In the X-mouse model, ExoBlock suppressed tumor recurrence in a T cell-dependent manner. In the OTX model, ExoBlock treatment resulted in an increase in the number as well as function of CD4 and CD8 T cells in the TME, which was associated with a reduction in tumor burden and metastasis, as well as in the number of circulating PS+ exosomes in tumor-bearing mice. CONCLUSION: Our results establish that targeting exosomal PS in TMEs with ExoBlock represents a promising strategy to enhance antitumor T-cell responses

    Humanized Mouse Model of Ovarian Cancer Recapitulates Patient Solid Tumor Progression, Ascites Formation, and Metastasis

    Get PDF
    Ovarian cancer is the most common cause of death from gynecological cancer. Understanding the biology of this disease, particularly how tumor-associated lymphocytes and fibroblasts contribute to the progression and metastasis of the tumor, has been impeded by the lack of a suitable tumor xenograft model. We report a simple and reproducible system in which the tumor and tumor stroma are successfully engrafted into NOD-scid IL2Rγnull (NSG) mice. This is achieved by injecting tumor cell aggregates derived from fresh ovarian tumor biopsy tissues (including tumor cells, and tumor-associated lymphocytes and fibroblasts) i.p. into NSG mice. Tumor progression in these mice closely parallels many of the events that are observed in ovarian cancer patients. Tumors establish in the omentum, ovaries, liver, spleen, uterus, and pancreas. Tumor growth is initially very slow and progressive within the peritoneal cavity with an ultimate development of tumor ascites, spontaneous metastasis to the lung, increasing serum and ascites levels of CA125, and the retention of tumor-associated human fibroblasts and lymphocytes that remain functional and responsive to cytokines for prolonged periods. With this model one will be able to determine how fibroblasts and lymphocytes within the tumor microenvironment may contribute to tumor growth and metastasis, and will make it possible to evaluate the efficacy of therapies that are designed to target these cells in the tumor stroma

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    CTLA-4 blockade augments human T lymphocyte-mediated suppression of lung tumor xenografts in SCID mice

    Full text link
    Previous studies by others using transplantable murine tumor models have demonstrated that the administration of antibodies that block CTLA-4 interaction with B7 can provoke the elimination of established tumors, and that the tumor suppression is mediated by T-cells and/or cells expressing NK1.1. Studies from our lab have established in a human/severe combined immunodeficient (SCID) mouse chimeric model that autologous peripheral blood leukocytes (PBL) can suppress the growth of tumor xenografts in a PBL dose-dependent fashion, and that this suppression is dependent upon the patient’s T and NK cells. Using this human/mouse chimeric model, we sought to determine whether an antibody blockade of CTLA-4 would enhance the anti-tumor response of a patient’s PBL. It was first important to determine whether the tumor suppression observed in the SCID model was dependent upon CD28/B7 co-stimulation. Blockade of B7 with a human CTLA-4-Ig fusion protein completely abrogated the lymphocyte-mediated tumor suppression, confirming in this model that tumor suppression is dependent upon a CD28/B7 co-stimulation. Using two different CTLA-4 specific monoclonal antibodies, we observed that CTLA-4 blockade significantly enhanced the human lymphocyte-mediated tumor suppression in mice co-engrafted with PBL and tumor cells. This enhancement was observed in both an allogeneic setting (in which the PBL were allogeneic with respect to the tumor) and an autologous setting (in which the PBL and tumor were from the same patient). These results sustain the notion that human anti-tumor immune response can be augmented (in vivo) by blocking the interaction between CTLA-4 and B7.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46864/1/262_2005_Article_668.pd

    <原著>悪性中皮腫と他の肺悪性腫瘍との鑑別のためのモノクローナル抗体の作成

    Get PDF
    The accurate diagnosis of mesothelioma remains difficult despite advances of diagnostic technique . And specific monoclonal antibody (McAb) against mesothelioma have not been reported. In an attempt to develop mesothelioma specific McAb(s), spleen cells from a mouse immunized with isolated tumor cells were fused to a drug resistant mouse myeloma cell lines. Over 200 hybridomas were assayed for their preferential react ivity with mesothelioma cell lines or mesothelioma tumor biopsy tissues. Two monoclonal antibodies 2A3 and 4E1 were identified that bound 617 of the mesotheliomas, tested, but did not bind to the majority, 11/13 (for 2A3) and 12/13 (for 4E1 ), of other lung tumor types. Based upon western blot analysis of one and two-dimensional gels and upon the distribution pattern of the antibody recognized molecule in mesotheliomas and non-mesothelioma lung tumors, 2A3 binds to the cell adhesion molecule CD44. While the specificity of 4E1 has not yet been unequivocally established it appears to recognize a variant form of the CD44 molecule.悪性中皮腫の診断は困難なことが多く, 特に, 肺の腺癌との鑑別は困難である. また悪性中皮腫に特異的なモノクローナル抗体もいまだ報告されていない. そこで, 悪性中皮腫に特異的モノクローナル抗体の作成を試みた. 悪性中皮腫の新鮮な手術標本から得られた腫瘍細胞で BALB/C マウスを免疫し, 脾細胞を採取した. 同脾細胞をマウスミエローマ細胞と融合し, ハイブリドーマを作成した. 200以上のハイブリドーマより, 2つのモノクローナル抗体 2A3 と 4E1 を1次スクリーニングによって選択し, Immunocytoadherence Assay を行った. 2A3, 4E1 ともに, 悪性中皮腫の継代培養細胞に対して陽性で, 新鮮腫瘍細胞浮遊液に対しては7例中6例が陽性であった. 初代培養細胞に対しては 2A3 が6例中4例, 4E1 が6例中5例に陽性を示した. 悪性中皮腫以外の腫瘍細胞に対しては大多数が陰性で, 2A3 は13例中2例, 4E1は13例中1例のみが陽性であった. 2A3 と 4E1 の標的分子の解析のために Western blot を行ったところ, これら2つの抗体が CD44 のstandard または variant form を認識している可能性が示唆された. さらに, 2次元の Western blot で 2A3 は抗 CD44 抗体と同じ分子量, 同じ等電点を持つ分子を認識していることが判明した

    Tumor-Associated Exosomes: A Potential Therapeutic Target for Restoring Anti-Tumor T Cell Responses in Human Tumor Microenvironments

    Full text link
    Exosomes are a subset of extracellular vesicles (EVs) that are released by cells and play a variety of physiological roles including regulation of the immune system. Exosomes are heterogeneous and present in vast numbers in tumor microenvironments. A large subset of these vesicles has been demonstrated to be immunosuppressive. In this review, we focus on the suppression of T cell function by exosomes in human tumor microenvironments. We start with a brief introduction to exosomes, with emphasis on their biogenesis, isolation and characterization. Next, we discuss the immunosuppressive effect of exosomes on T cells, reviewing in vitro studies demonstrating the role of different proteins, nucleic acids and lipids known to be associated with exosome-mediated suppression of T cell function. Here, we also discuss initial proof-of-principle studies that established the potential for rescuing T cell function by blocking or targeting exosomes. In the final section, we review different in vivo models that were utilized to study as well as target exosome-mediated immunosuppression, highlighting the Xenomimetic mouse (X-mouse) model and the Omental Tumor Xenograft (OTX) model that were featured in a recent study to evaluate the efficacy of a novel phosphatidylserine-binding molecule for targeting immunosuppressive tumor-associated exosomes
    corecore