40 research outputs found

    Ernst Freund as Precursor of the Rational Study of Corporate Law

    Get PDF
    Gindis, David, Ernst Freund as Precursor of the Rational Study of Corporate Law (October 27, 2017). Journal of Institutional Economics, Forthcoming. Available at SSRN: https://ssrn.com/abstract=2905547, doi: https://dx.doi.org/10.2139/ssrn.2905547The rise of large business corporations in the late 19th century compelled many American observers to admit that the nature of the corporation had yet to be understood. Published in this context, Ernst Freund's little-known The Legal Nature of Corporations (1897) was an original attempt to come to terms with a new legal and economic reality. But it can also be described, to paraphrase Oliver Wendell Holmes, as the earliest example of the rational study of corporate law. The paper shows that Freund had the intuitions of an institutional economist, and engaged in what today would be called comparative institutional analysis. Remarkably, his argument that the corporate form secures property against insider defection and against outsiders anticipated recent work on entity shielding and capital lock-in, and can be read as an early contribution to what today would be called the theory of the firm.Peer reviewe

    Relatório de estágio em farmácia comunitária

    Get PDF
    Relatório de estágio realizado no âmbito do Mestrado Integrado em Ciências Farmacêuticas, apresentado à Faculdade de Farmácia da Universidade de Coimbr

    Mature Enzymatic Collagen Cross-Links, Hydroxylysylpyridinoline and Lysylpyridinoline, in the Aging Human Vitreous

    Get PDF
    PURPOSE. The vitreous body of the human eye undergoes progressive morphologic changes with aging. Since the enzymatic collagen cross-links hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP) are known to be important for the integrity of the collagen matrix, the presence in the vitreous on aging was studied. METHODS. Vitreous bodies (VBs; n = 143) from 119 donors (age 4-80 years; mean +/- SD, 54.3 +/- 17.0 years) were carefully dissected. After weighing and freeze-drying, all samples were analyzed by high performance liquid chromatography. Left and right eyes of 24 donors were compared and, for age-related phenomena, 119 single eyes were used. RESULTS. Within one donor, no significant differences were found between left and right eyes. On aging, VB wet weight (4.42 +/- 0.84 g) accumulates until 35 years and decreases thereafter. Collagen content (0.30 +/- 0.14 mg), HP per triple helix (TH; 0.55 +/- 0.18), and (HP plus LP)/TH (0.61 +/- 0.19) increase until 50 years followed by a decrease, whereas LP/TH (0.057 +/- 0.018) accumulates until 50 years and remains constant thereafter. The ratio between HP and LP (range, 0.42 - 31.0; median, 10.0) is constant over time. CONCLUSIONS. The accumulation of enzymatic collagen cross-links until 50 years is consistent with collagen maturation and possible collagen synthesis in the human vitreous body. The decline of collagen cross-links after 50 years is consistent with collagen breakdown. (Invest Ophthalmol Vis Sci. 2009; 50: 1041-1046) DOI: 10.1167/iovs.08-171

    Specificity of DC-SIGN for mannose- and fucose-containing glycans

    No full text
    The dendritic cell specific C-type lectin dendritic cell specific ICAM-3 grabbing non-integrin (DC-SIGN) binds to "self" glycan ligands found on human cells and to "foreign" glycans of bacterial or parasitic pathogens. Here, we investigated the binding properties of DC-SIGN to a large array of potential ligands in a glycan array format. Our data indicate that DC-SIGN binds with K(d)<2muM to a neoglycoconjugate in which Galbeta1-4(Fucalpha1-3)GlcNAc (Le(x)) trisaccharides are expressed multivalently. A lower selective binding was observed to oligomannose-type N-glycans, diantennary N-glycans expressing Le(x) and GalNAcbeta1-4(Fucalpha1-3)GlcNAc (LacdiNAc-fucose), whereas no binding was observed to N-glycans expressing core-fucose linked either alpha1-6 or alpha1-3 to the Asn-linked GlcNAc of N-glycans. These results demonstrate that DC-SIGN is selective in its recognition of specific types of fucosylated glycans and subsets of oligomannose- and complex-type N-glycans

    Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis

    No full text
    BACKGROUND: Galectin-3 has been implicated in the development of organ fibrosis. It is unknown whether it is a relevant therapeutic target in cardiac remodeling and heart failure. METHODS AND RESULTS: Galectin-3 knock-out and wild-type mice were subjected to angiotensin II infusion (2.5 µg/kg for 14 days) or transverse aortic constriction for 28 days to provoke cardiac remodeling. The efficacy of the galectin-3 inhibitor N-acetyllactosamine was evaluated in TGR(mREN2)27 (REN2) rats and in wild-type mice with the aim of reversing established cardiac remodeling after transverse aortic constriction. In wild-type mice, angiotensin II and transverse aortic constriction perturbations caused left-ventricular (LV) hypertrophy, decreased fractional shortening, and increased LV end-diastolic pressure and fibrosis (P<0.05 versus control wild type). Galectin-3 knock-out mice also developed LV hypertrophy but without LV dysfunction and fibrosis (P=NS). In REN2 rats, pharmacological inhibition of galectin-3 attenuated LV dysfunction and fibrosis. To elucidate the beneficial effects of galectin-3 inhibition on myocardial fibrogenesis, cultured fibroblasts were treated with galectin-3 in the absence or presence of galectin-3 inhibitor. Inhibition of galectin-3 was associated with a downregulation in collagen production (collagen I and III), collagen processing, cleavage, cross-linking, and deposition. Similar results were observed in REN2 rats. Inhibition of galectin-3 also attenuated the progression of cardiac remodeling in a long-term transverse aortic constriction mouse model. CONCLUSIONS: Genetic disruption and pharmacological inhibition of galectin-3 attenuates cardiac fibrosis, LV dysfunction, and subsequent heart failure development. Drugs binding to galectin-3 may be potential therapeutic candidates for the prevention or reversal of heart failure with extensive fibrosis
    corecore