4 research outputs found

    An Algorithmic Approach to Quantum Field Theory

    Full text link
    The lattice formulation provides a way to regularize, define and compute the Path Integral in a Quantum Field Theory. In this paper we review the theoretical foundations and the most basic algorithms required to implement a typical lattice computation, including the Metropolis, the Gibbs sampling, the Minimal Residual, and the Stabilized Biconjugate inverters. The main emphasis is on gauge theories with fermions such as QCD. We also provide examples of typical results from lattice QCD computations for quantities of phenomenological interest.Comment: 44 pages, to be published in IJMP

    Spontaneous magnetization of the Ising model on the Sierpinski carpet fractal, a rigorous result

    Full text link
    We give a rigorous proof of the existence of spontaneous magnetization at finite temperature for the Ising spin model defined on the Sierpinski carpet fractal. The theorem is inspired by the classical Peierls argument for the two dimensional lattice. Therefore, this exact result proves the existence of spontaneous magnetization for the Ising model in low dimensional structures, i.e. structures with dimension smaller than 2.Comment: 14 pages, 8 figure
    corecore