6 research outputs found

    Stopping power and collective flow of nuclear matter in the reaction Ar+Pb at 0.8 GeV/u

    Get PDF
    Charged-particle exclusive data for Ar+Pb collisions at 0.772 GeV/u are analyzed in terms of collective variables for the event shapes in momentum space. Semicentral collisions lead to sidewards flow whereas nearly head-on collisions have spherical shapes in the c.m. frame, resulting from complete stopping of projectile motion. The hydrodynamical model predictions agree qualitatively with the data whereas the standard cascade model disagrees, lacking in stopping power and collective flow

    Collective motion in nucleus-nucleus collisions at 800 MeV/nucleon

    Get PDF
    Semicentral Ar+KCl, La+La, and Ar+Pb collisions at 800 MeV/nucleon were studied using a streamer chamber. The results are analyzed in the framework of the transverse momentum analysis and in terms of the average sphericity matrix. A critical examination of the analysis procedures, both experimental and theoretical, is given. New procedures are described to account for overall momentum conservation in the reaction, and to correct for azimuthal variations in the detection efficiency. Average transverse momenta per nucleon in the reaction plane are presented for deuterons emitted in the forward hemisphere, as these provide the most reliable information. A Vlasov-Uehling-Uhlenbeck calculation with a stiff equation of state gives a good fit to the momenta in the Ar+Pb reaction. Flow effects parametrized further using the sphericity tensor are found stronger than in the cascade model and consistently weaker than predicted by hydrodynamics. Parameters from the sphericity tensor exhibit a larger variation as a function of multiplicity than do the average momenta per nucleon

    Measuring mechanical stresses on inserts during injection molding

    Full text link
    Assembly molding presents an interesting approach to innovative product solutions. Here, individual components can be simultaneously positioned, affixed, and provided with a casing. However, while overmolding elements in the mold cavity with hot polymer melt, high mechanical loads occur on, in some cases, very sensitive components such as electronic devices. For the design of such systems, it is important to know these stresses, the influences on their quantities, and mathematical options for their prediction. In this article, a new measurement method for determining the forces acting on a small element in the cavity during the injection molding process in three dimensions is presented. Therefore, a new installation method for a force sensor was developed. The results in this article concentrate on force changes during one molding cycle. Our research shows that there are different mechanical load spectra in the different phases of the molding process. For example, the force component in flow direction on an element in the cavity is positive in the direction of the flow during filling. However, after the filling step, the force becomes negative due to the contraction of the injected material and results in a continuously increasing permanent force

    Pion and proton "temperatures" in relativistic heavy-ion reactions

    Get PDF
    Pion and proton production are measured to investigate thermal equilibrium in central collisions of 40Ar+KCl at 1.8 GeV/nucleon. The bulk of the pion yield is isotropic in the c.m. system, with an apparent temperature of 58±3 MeV, much lower than the 118±2 MeV of the protons. It is shown that the low pion "temperature" can be explained by the decay kinematics of delta resonances in thermal equilibrium. A (5±1)% component in the pion spectrum is, however, found to have a temperature of 110±10 MeV. The effect on the spectra of possible contributions from collective radial flow is discussed
    corecore