7 research outputs found

    Collapse arrest and soliton stabilization in nonlocal nonlinear media

    Get PDF
    We investigate the properties of localized waves in systems governed by nonlocal nonlinear Schrodinger type equations. We prove rigorously by bounding the Hamiltonian that nonlocality of the nonlinearity prevents collapse in, e.g., Bose-Einstein condensates and optical Kerr media in all physical dimensions. The nonlocal nonlinear response must be symmetric, but can be of completely arbitrary shape. We use variational techniques to find the soliton solutions and illustrate the stabilizing effect of nonlocality.Comment: 4 pages with 3 figure

    Berry phases for the nonlocal Gross-Pitaevskii equation with a quadratic potential

    Full text link
    A countable set of asymptotic space -- localized solutions is constructed by the complex germ method in the adiabatic approximation for the nonstationary Gross -- Pitaevskii equation with nonlocal nonlinearity and a quadratic potential. The asymptotic parameter is 1/T, where T≫1T\gg1 is the adiabatic evolution time. A generalization of the Berry phase of the linear Schr\"odinger equation is formulated for the Gross-Pitaevskii equation. For the solutions constructed, the Berry phases are found in explicit form.Comment: 13 pages, no figure

    Nonlocal solitons

    No full text
    corecore