7 research outputs found
Collapse arrest and soliton stabilization in nonlocal nonlinear media
We investigate the properties of localized waves in systems governed by
nonlocal nonlinear Schrodinger type equations. We prove rigorously by bounding
the Hamiltonian that nonlocality of the nonlinearity prevents collapse in,
e.g., Bose-Einstein condensates and optical Kerr media in all physical
dimensions. The nonlocal nonlinear response must be symmetric, but can be of
completely arbitrary shape. We use variational techniques to find the soliton
solutions and illustrate the stabilizing effect of nonlocality.Comment: 4 pages with 3 figure
Berry phases for the nonlocal Gross-Pitaevskii equation with a quadratic potential
A countable set of asymptotic space -- localized solutions is constructed by
the complex germ method in the adiabatic approximation for the nonstationary
Gross -- Pitaevskii equation with nonlocal nonlinearity and a quadratic
potential. The asymptotic parameter is 1/T, where is the adiabatic
evolution time.
A generalization of the Berry phase of the linear Schr\"odinger equation is
formulated for the Gross-Pitaevskii equation. For the solutions constructed,
the Berry phases are found in explicit form.Comment: 13 pages, no figure