3 research outputs found

    Arterial expression of 5-HT(2B )and 5-HT(1B )receptors during development of DOCA-salt hypertension

    Get PDF
    BACKGROUND: 5-hydroxytryptamine (5-HT)(2B )and 5-HT(1B )receptors are upregulated in arteries from hypertensive DOCA-salt rats and directly by mineralocorticoids. We hypothesized that increased 5-HT(2B )and 5-HT(1B )receptor density and contractile function would precede increased blood pressure in DOCA-high salt rats. We performed DOCA-salt time course (days 1, 3, 5 and 7) studies using treatment groups of: DOCA-high salt, DOCA-low salt, Sham and Sham-high salt rats. RESULTS: In isolated-tissue baths, DOCA-high salt aorta contracted to the 5-HT(2B )receptor agonist BW723C86 on day 1; Sham aorta did not contract. The 5-HT(1B )receptor agonist CP93129 had no effect in arteries from any group. On days 3, 5 and 7 CP93129 and BW723C86 contracted DOCA-high salt and Sham-high salt aorta; Sham and DOCA-low salt aorta did not respond. Western analysis of DOCA-high salt aortic homogenates revealed increased 5-HT(2B )receptor levels by day 3; 5-HT(1B )receptor density was unchanged. Aortic homogenates from the other groups showed unchanged 5-HT(2B )and 5-HT(1B )receptor levels. CONCLUSION: These data suggest that functional changes of 5-HT(2B )but not 5-HT(1B )receptors may play a role in the development of DOCA-salt hypertension

    Inability of Serotonin to Activate the c-Jun N-terminal Kinase and p38 Kinase Pathways in Rat Aortic Vascular Smooth Muscle Cells

    Get PDF
    BACKGROUND: Serotonin (5-HT, 5-hydroxytryptamine) activates the Extracellular Signal-Regulated Kinase (ERK)/ Mitogen-Activated Protein Kinase (MAPK) pathways, in vascular smooth muscle cells. Parallel MAPK pathways, the c-Jun N-terminal Kinase (JNK) and p38 pathway, are activated by stimulators of the ERK/MAPK pathway. We hypothesized that 5-HT would activate the JNK and p38 pathways in rat vascular smooth muscle cells. RESULTS: Results were determined using standard Western analysis and phosphospecific JNK and p38 antibodies. No significant activation by 5-HT (10(-9) – 10(-5) M; 30 min) of the JNK or p38 pathways, as measured by protein phosphorylation, was observed in any of these experiments. These experiments were repeated in the presence of the serine/threonine phosphatase inhibitor okadaic acid (1 uM) and the tyrosine phosphatase inhibitor sodium orthovanadate (1 uM) to maximize any observable signal. Even under these optimized conditions, no activation of the JNK or p38 pathways by 5-HT was observed. Time course experiments (5-HT 10(-5) M; 5 min, 15 min, 30 min and 60 min) showed no significant activation of JNK after incubation with 5-HT at any time point. However, we detected strong activation of JNK p54 and p46 (5- and 7 fold increases in bands p54 and p46, respectively over control levels) by anisomycin (500 ng/ml, 30 min). Similarly, a JNK activity assay failed to reveal activation of JNK by 5-HT, in contrast to the strong stimulation by anisomycin. CONCLUSION: Collectively, these data support the conclusion that 5-HT does not activate the JNK or p38 pathways in rat vascular smooth muscle cells
    corecore