1,340 research outputs found

    Corrections to Hawking-like Radiation for a Friedmann-Robertson-Walker Universe

    Full text link
    Recently, a Hamilton-Jacobi method beyond semiclassical approximation in black hole physics was developed by \emph{Banerjee} and \emph{Majhi}\cite{beyond0}. In this paper, we generalize their analysis of black holes to the case of Friedmann-Robertson-Walker (FRW) universe. It is shown that all the higher order quantum corrections in the single particle action are proportional to the usual semiclassical contribution. The corrections to the Hawking-like temperature and entropy of apparent horizon for FRW universe are also obtained. In the corrected entropy, the area law involves logarithmic area correction together with the standard inverse power of area term.Comment: 10 pages, no figures, comments are welcome; v2: references added and some typoes corrected, to appear in Euro.Phys.J.C; v3:a defect corrected. We thank Dr.Elias Vagenas for pointing out a defect of our pape

    BF models, Duality and Bosonization on higher genus surfaces

    Full text link
    The generating functional of two dimensional BFBF field theories coupled to fermionic fields and conserved currents is computed in the general case when the base manifold is a genus g compact Riemann surface. The lagrangian density L=dBAL=dB{\wedge}A is written in terms of a globally defined 1-form AA and a multi-valued scalar field BB. Consistency conditions on the periods of dBdB have to be imposed. It is shown that there exist a non-trivial dependence of the generating functional on the topological restrictions imposed to BB. In particular if the periods of the BB field are constrained to take values 4πn4\pi n, with nn any integer, then the partition function is independent of the chosen spin structure and may be written as a sum over all the spin structures associated to the fermions even when one started with a fixed spin structure. These results are then applied to the functional bosonization of fermionic fields on higher genus surfaces. A bosonized form of the partition function which takes care of the chosen spin structure is obtainedComment: 17 page

    R^2 Corrections to Asymptotically Lifshitz Spacetimes

    Full text link
    We study R2R^{2} corrections to five-dimensional asymptotically Lifshitz spacetimes by adding Gauss-Bonnet terms in the effective action. For the zero-temperature backgrounds we obtain exact solutions in both pure Gauss-Bonnet gravity and Gauss-Bonnet gravity with non-trivial matter. The dynamical exponent undergoes finite renormalization in the latter case. For the finite-temperature backgrounds we obtain black brane solutions perturbatively and calculate the ratio of shear viscosity to entropy density η/s\eta/s. The KSS bound is still violated but unlike the relativistic counterparts, the causality of the boundary field theory cannot be taken as a constraint.Comment: 24 pages, Latex, typos fixed, accepted by JHE

    Time-Space Noncommutativity in Gravitational Quantum Well scenario

    Get PDF
    A novel approach to the analysis of the gravitational well problem from a second quantised description has been discussed. The second quantised formalism enables us to study the effect of time space noncommutativity in the gravitational well scenario which is hitherto unavailable in the literature. The corresponding first quantized theory reveals a leading order perturbation term of noncommutative origin. Latest experimental findings are used to estimate an upper bound on the time--space noncommutative parameter. Our results are found to be consistent with the order of magnitude estimations of other NC parameters reported earlier.Comment: 7 pages, revTe

    Higher order WKB corrections to black hole entropy in brick wall formalism

    Full text link
    We calculate the statistical entropy of a quantum field with an arbitrary spin propagating on the spherical symmetric black hole background by using the brick wall formalism at higher orders in the WKB approximation. For general spins, we find that the correction to the standard Bekenstein-Hawking entropy depends logarithmically on the area of the horizon. Furthermore, we apply this analysis to the Schwarzschild and Schwarzschild-AdS black holes and discuss our results.Comment: 21 pages, published versio

    Aspects of meson properties in dense nuclear matter

    Get PDF
    We investigate the modification of meson spectral densities in dense nuclear matter at zero temperature. These effects are studied in a fully relativistic mean field model which goes beyond the linear density approximation and also includes baryon resonances. In particular, the role of N*(1520) and N*(1720) on the rho meson spectral density is highlighted. Even though the nucleon-nucleon loop and the nucleon-resonance loop contribute with the opposite sign, an overall reduction of rho meson mass is still observed at high density. Importantly, it is shown that the resonances cause substantial broadening of the rho meson spectral density in matter and also induces non-trivial momentum dependence. The spectral density of the a0 meson is also shown. We study the dispersion relations and collective oscillations induced by the rho meson propagation in nuclear matter together with the influence of the mixing of rho with the a0 meson. The relevant expression for the plasma frequency is also recovered analytically in the appropriate limit.Comment: 19 pages, 17 figure

    Interacting entropy-corrected holographic dark energy with apparent horizon as an infrared cutoff

    Full text link
    In this work we consider the entropy-corrected version of interacting holographic dark energy (HDE), in the non-flat universe enclosed by apparent horizon. Two corrections of entropy so-called logarithmic 'LEC' and power-law 'PLEC' in HDE model with apparent horizon as an IR-cutoff are studied. The ratio of dark matter to dark energy densities uu, equation of state parameter wDw_D and deceleration parameter qq are obtained. We show that the cosmic coincidence is satisfied for both interacting models. By studying the effect of interaction in EoS parameter, we see that the phantom divide may be crossed and also find that the interacting models can drive an acceleration expansion at the present and future, while in non-interacting case, this expansion can happen only at the early time. The graphs of deceleration parameter for interacting models, show that the present acceleration expansion is preceded by a sufficiently long period deceleration at past. Moreover, the thermodynamical interpretation of interaction between LECHDE and dark matter is described. We obtain a relation between the interaction term of dark components and thermal fluctuation in a non-flat universe, bounded by the apparent horizon. In limiting case, for ordinary HDE, the relation of interaction term versus thermal fluctuation is also calculated.Comment: 20 pages, 8 figures, figures changed, some Ref. is added, changed some sentences, accepted by General relativity and gravitation (GERG

    Regular black hole in three dimensions

    Full text link
    We find a new black hole in three dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare thermodynamics of this black hole with that of non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy.Comment: 15 pages, 16 figures, 3D noncommutative black hole included as Sec 4, a version to appear in EPJ

    Topological Charged Black Holes in High Dimensional Spacetimes and Their Formation from Gravitational Collapse of a Type II Fluid

    Full text link
    Topological charged black holes coupled with a cosmological constant in R2×XD2R^{2}\times X^{D-2} spacetimes are studied, where XD2X^{D-2} is an Einstein space of the form (D2)RAB=k(D3)hAB{}^{(D-2)}R_{AB} = k(D-3) h_{AB}. The global structure for the four-dimensional spacetimes with k=0k = 0 is investigated systematically. The most general solutions that represent a Type IIII fluid in such a high dimensional spacetime are found, and showed that topological charged black holes can be formed from the gravitational collapse of such a fluid. When the spacetime is (asymptotically) self-similar, the collapse always forms black holes for k=0,1k = 0, -1, in contrast to the case k=1k = 1, where it can form either balck holes or naked singularities.Comment: 14 figures, to appear in Phys. Rev.

    Dynamics of Coronal Bright Points as seen by Sun Watcher using Active Pixel System detector and Image Processing (SWAP), Atmospheric Imaging Assembly AIA), and Helioseismic and Magnetic Imager (HMI)

    Full text link
    The \textit{Sun Watcher using Active Pixel system detector and Image Processing}(SWAP) on board the \textit{PRoject for OnBoard Autonomy\todash 2} (PROBA\todash 2) spacecraft provides images of the solar corona in EUV channel centered at 174 \AA. These data, together with \textit{Atmospheric Imaging Assembly} (AIA) and the \textit{Helioseismic and Magnetic Imager} (HMI) on board \textit{Solar Dynamics Observatory} (SDO), are used to study the dynamics of coronal bright points. The evolution of the magnetic polarities and associated changes in morphology are studied using magnetograms and multi-wavelength imaging. The morphology of the bright points seen in low-resolution SWAP images and high-resolution AIA images show different structures, whereas the intensity variations with time show similar trends in both SWAP 174 and AIA 171 channels. We observe that bright points are seen in EUV channels corresponding to a magnetic-flux of the order of 101810^{18} Mx. We find that there exists a good correlation between total emission from the bright point in several UV\todash EUV channels and total unsigned photospheric magnetic flux above certain thresholds. The bright points also show periodic brightenings and we have attempted to find the oscillation periods in bright points and their connection to magnetic flux changes. The observed periods are generally long (10\todash 25 minutes) and there is an indication that the intensity oscillations may be generated by repeated magnetic reconnection
    corecore