26,027 research outputs found

    Self dual models and mass generation in planar field theory

    Full text link
    We analyse in three space-time dimensions, the connection between abelian self dual vector doublets and their counterparts containing both an explicit mass and a topological mass. Their correspondence is established in the lagrangian formalism using an operator approach as well as a path integral approach. A canonical hamiltonian analysis is presented, which also shows the equivalence with the lagrangian formalism. The implications of our results for bosonisation in three dimensions are discussed.Comment: 15 pages,Revtex, No figures; several changes; revised version to appear in Physical Review

    Survival of orbiting in 20^{20}Ne (7 - 10 MeV/nucleon) + 12^{12}C reactions

    Full text link
    The inclusive energy distributions of fragments with Z \geq 3 emitted from the bombardment of 12^{12}C by 20^{20}Ne beams with incident energies between 145 and 200 MeV have been measured in the angular range θlab\theta_{lab} \sim 10^\circ - 50^\circ. Damped fragment yields in all cases have been found to be characteristic of emission from fully energy equilibrated composites; for B, C fragments, average Q-values, , were independent of the centre of mass emission angle (θc.m\theta_{c.m}), and the angular distributions followed \sim1/sinθc.m\theta_{c.m} like variation, signifying long life times of the emitting di-nuclear systems. Total yields of these fragments have been found to be much larger compared to the standard statistical model predictions of the same. This may be indicative of the survival of orbiting like process in 12^{12}C + 20^{20}Ne system at these energies.Comment: 7 pages, 5 figures, accepted for publication in Phys. Rev. C (Rapid Communication

    Effect of simultaneous application of field and pressure on magnetic transitions in La0.5{_{0.5}}Ca0.5{_{0.5}}MnO3{_{3}}

    Full text link
    We study combined effect of hydrostatic pressure and magnetic field on the magnetization of La0.5{_{0.5}}Ca0.5{_{0.5}}MnO3{_{3}}. We do not observe any significant effect of pressure on the paramagnetic to ferromagnetic transition. However, pressure asymmetrically affects the thermal hysteresis across the ferro-antiferromagnetic first-order transition, which has strong field dependence. Though the supercooling (T*) and superheating (T**) temperatures decrease and the value of magnetization at 5K (M5K_{5K}) increases with pressure, T* and M5K_{5K} shows abrupt changes in tiny pressure of 0.68kbar. These anomalies enhance with field. In 7Tesla field, transition to antiferromagnetic phase disappears in 0.68kbar and M5K_{5K} show significant increase. Thereafter, increase in pressure up to \sim10kbar has no noticeable effect on the magnetization

    Topological and Universal Aspects of Bosonized Interacting Fermionic Systems in (2+1)d

    Full text link
    General results on the structure of the bosonization of fermionic systems in (2+1)(2+1)d are obtained. In particular, the universal character of the bosonized topological current is established and applied to generic fermionic current interactions. The final form of the bosonized action is shown to be given by the sum of two terms. The first one corresponds to the bosonization of the free fermionic action and turns out to be cast in the form of a pure Chern-Simons term, up to a suitable nonlinear field redefinition. We show that the second term, following from the bosonization of the interactions, can be obtained by simply replacing the fermionic current by the corresponding bosonized expression.Comment: 29 pages, RevTe

    Characterization of fragment emission in ^{20}Ne (7 - 10 MeV/nucleon) + ^{12}C reactions

    Full text link
    The inclusive energy distributions of the complex fragments (3 \leq Z \leq 7) emitted from the bombardment of ^{12}C by ^{20}Ne beams with incident energies between 145 and 200 MeV have been measured in the angular range 10oθlab^{o} \leq \theta_{lab} \leq 50^{o}. Damped fragment yields in all the cases have been found to be the characteristic of emission from fully energy equilibrated composites. The binary fragment yields are compared with the standard statistical model predictions. Enhanced yields of entrance channel fragments (5 \leq Z \leq 7) indicate the survival of orbiting-like process in ^{20}Ne + ^{12}C system at these energies.Comment: 18 pages, 13 figure

    Phase separation and the effect of quenched disorder in Pr0.5Sr0.5MnO3Pr_{0.5}Sr_{0.5}MnO_3

    Full text link
    The nature of phase separation in Pr0.5Sr0.5MnO3Pr_{0.5}Sr_{0.5}MnO_3 has been probed by linear as well as nonlinear magnetic susceptibilities and resistivity measurements across the 2nd order paramagnetic to ferromagnetic transition (TCT_C) and 1st order ferromagnetic to antiferromagnetic transition (TNT_N). We found that the ferromagnetic (metallic) clusters, which form with the onset of long-range order in the system at TCT_C, continuously decrease their size with the decrease in temperature and coexist with non-ferromagnetic (insulating) clusters. These non-ferromagnetic clusters are identified to be antiferromagnetic. Significantly, it is shown that they do not arise because of the superheating effect of the lower temperature 1st order transition. Thus reveals unique phase coexistence in a manganite around half-doping encompassing two long-range order transitions. Both the ferromagnetic and antiferromagnetic clusters form at TCT_C and persist much below TNT_N. Substitution of quenched disorder (Ga) at Mn-site promotes antiferromagnetism at the cost of ferromagnetism without adding any magnetic interaction or introducing any significant lattice distortion. Moreover, increase in disorder decreases the ferromagnetic cluster size and with 7.5% Ga substitution clusters size reduces to the single domain limit. Yet, all the samples show significant short-range ferromagnetic interaction much above TCT_C. Resistivity measurements also reveal the novel phase coexistence identified from the magnetic measurements. It is significant that, increase in disorder up to 7.5% increases the resistivity of the low temperature antiferromagnetic phase by about four orders

    On the Infra-Red Spectra of Solutions of O-Chlorophenol and Phenol

    Get PDF

    TPCI: The PLUTO-CLOUDY Interface

    Full text link
    We present an interface between the (magneto-) hydrodynamics code PLUTO and the plasma simulation and spectral synthesis code CLOUDY. By combining these codes, we constructed a new photoionization hydrodynamics solver: The PLUTO-CLOUDY Interface (TPCI), which is well suited to simulate photoevaporative flows under strong irradiation. The code includes the electromagnetic spectrum from X-rays to the radio range and solves the photoionization and chemical network of the 30 lightest elements. TPCI follows an iterative numerical scheme: First, the equilibrium state of the medium is solved for a given radiation field by CLOUDY, resulting in a net radiative heating or cooling. In the second step, the latter influences the (magneto-) hydrodynamic evolution calculated by PLUTO. Here, we validated the one-dimensional version of the code on the basis of four test problems: Photoevaporation of a cool hydrogen cloud, cooling of coronal plasma, formation of a Stroemgren sphere, and the evaporating atmosphere of a hot Jupiter. This combination of an equilibrium photoionization solver with a general MHD code provides an advanced simulation tool applicable to a variety of astrophysical problems.Comment: 13 pages, 10 figures, accepted for publication in A&
    corecore