32,245 research outputs found

    Voros product, noncommutative inspired Reissner-Nordstr{\"o}m black hole and corrected area law

    Full text link
    We emphasize the importance of the Voros product in defining a noncommutative inspired Reissner-Nordstr\"{o}m black hole. The entropy of this black hole is then computed in the tunneling approach and is shown to obey the area law at the next to leading order in the noncommutative parameter θ\theta. Modifications to entropy/area law is then obtained by going beyond the semi-classical approximation. The leading correction to the semiclassical entropy/area law is found to be logarithmic and its coefficient involves the noncommutative parameter θ\theta.Comment: 12 pages Late

    Lagrangian analysis of `trivial' symmetries in models of gravity

    Full text link
    We study the differences between Poincare and canonical hamiltonian symmetries in models of gravity through the corresponding Noether identities and show that they are equivalent modulo trivial gauge symmetries.Comment: 4 pages, LaTeX; Based on presentation at the conference "Relativity and Gravitation: 100 Years after Einstein in Prague," held in Prague, June 201

    Artificial Life in an Exciton-Polariton Lattice

    Full text link
    We show theoretically that a lattice of exciton-polaritons can behave as a life-like cellular automaton when simultaneously excited by a continuous wave coherent field and a time-periodic sequence of non-resonant pulses. This provides a mechanism of realizing a range of highly sought spatiotemporal structures under the same conditions, including: discrete solitons, oscillating solitons, rotating solitons, breathers, soliton trains, guns, and choatic behaviour. These structures can survive in the system indefinitely, despite the presence of dissipation, and allow universal computation.Comment: 14 pages, 14 figure

    Quantum Tunneling, Blackbody Spectrum and Non-Logarithmic Entropy Correction for Lovelock Black Holes

    Full text link
    We show, using the tunneling method, that Lovelock black holes Hawking radiate with a perfect blackbody spectrum. This is a new result. Within the semiclassical (WKB) approximation the temperature of the spectrum is given by the semiclassical Hawking temperature. Beyond the semiclassical approximation the thermal nature of the spectrum does not change but the temperature undergoes some higher order corrections. This is true for both black hole (event) and cosmological horizons. Using the first law of thermodynamics the black hole entropy is calculated. Specifically the DD-dimensional static, chargeless black hole solutions which are spherically symmetric and asymptotically flat, AdS or dS are considered. The interesting property of these black holes is that their semiclassical entropy does not obey the Bekenstein-Hawking area law. It is found that the leading correction to the semiclassical entropy for these black holes is not logarithmic and next to leading correction is also not inverse of horizon area. This is in contrast to the black holes in Einstein gravity. The modified result is due to the presence of Gauss-Bonnet term in the Lovelock Lagrangian. For the limit where the coupling constant of the Gauss-Bonnet term vanishes one recovers the known correctional terms as expected in Einstein gravity. Finally we relate the coefficient of the leading (non-logarithmic) correction with the trace anomaly of the stress tensor.Comment: minor modifications, two new references added, LaTeX, JHEP style, 34 pages, no figures, to appear in JHE

    Global monopole in scalar tensor theory

    Get PDF
    The well known monopole solution of Barriola and Vilenkin (BV) resulting from the breaking of a global SO(3) symmetry is extended in general relativity along with a zero mass scalar field and also in Brans-Dicke(BD) theory of gravity.In the case of BD theory, the behaviour of spacetime and other variables such as BD scalar field and the monopole energy density have been studied numerically.For monopole along with a zero mass scalar field, exact solutions are obtained and depending upon the choice of arbitary parameters, the solutions either reduce to the BV case or to a pure scalar field solution as special cases.It is interesting to note that unlike the BV case the global monopole in the BD theory does exert gravitational pull on a test particle moving in its spacetime.Comment: 12 pages LaTex, 3 postscript figures, Communicated to Class.Quant.Gra

    A study of the personal income distribution in Australia

    Full text link
    We analyze the data on personal income distribution from the Australian Bureau of Statistics. We compare fits of the data to the exponential, log-normal, and gamma distributions. The exponential function gives a good (albeit not perfect) description of 98% of the population in the lower part of the distribution. The log-normal and gamma functions do not improve the fit significantly, despite having more parameters, and mimic the exponential function. We find that the probability density at zero income is not zero, which contradicts the log-normal and gamma distributions, but is consistent with the exponential one. The high-resolution histogram of the probability density shows a very sharp and narrow peak at low incomes, which we interpret as the result of a government policy on income redistribution.Comment: 7 pages, 4 figures, Proceedings of the Econophysics Colloquium, Canberra, 14-18 November 200
    corecore