32,466 research outputs found
Perturbative tests of non-perturbative counting
We observe that a class of quarter-BPS dyons in N=4 theories with charge
vector (Q, P) and with nontrivial values of the arithmetic duality invariant I
:= gcd (Q wedge P) are nonperturbative in one frame but perturbative in another
frame. This observation suggests a test of the recently computed
nonperturbative partition functions for dyons with nontrivial values of the
arithmetic invariant. For all values of I, we show that the nonperturbative
counting yields vanishing indexed degeneracy for this class of states
everywhere in the moduli space in precise agreement with the perturbative
result.Comment: 10 pages, 0 figure
Dynamics of Inflation and Dark Energy from Gravity
In this work we study certain classes of gravity which have
appealing phenomenological features, with respect to the successful realization
of the dark energy and of the inflationary era. Particularly, we discuss the
general formalism and we demonstrate how several inflationary and dark energy
evolutions can be described in the context of gravity. Also we
propose a unified model, in the context of which the early and late-time
dynamics are controlled by the gravity, thus producing
inflation and the dark energy era, while the intermediate era is approximately
identical with standard Einstein-Hilbert gravity. Also we calculate the power
spectrum of the primordial curvature perturbations corresponding to the unified
gravity model we propose, which as we demonstrate is nearly
scale invariant and compatible with the latest observational data constraints
Turbulence and its effect on protostellar disk formation
We analyse simulations of turbulent, magnetised molecular cloud cores
focussing on the formation of Class 0 stage protostellar discs and the physical
conditions in their surroundings. We show that for a wide range of initial
conditions Keplerian discs are formed in the Class 0 stage already.
Furthermore, we show that the accretion of mass and angular momentum in the
surroundings of protostellar discs occurs in a highly anisotropic manner, by
means of a few narrow accretion channels. The magnetic field structure in the
vicinity of the discs is highly disordered, revealing field reversals up to
distances of 1000 AU. These findings demonstrate that as soon as even mild
turbulent motions are included, the classical disc formation scenario of a
coherently rotating environment and a well-ordered magnetic field breaks down.Comment: Invited contribution to the NIC proceedings 2016 for the John von
Neumann-Institut f\"ur Computing (NIC) Symposium 201
Oscillations in active region fan loops: Observations from EIS/{\it Hinode} and AIA/SDO
Active region fan loops in AR 11076 were studied, in search of oscillations,
using high cadence spectroscopic observations from EIS on board Hinode combined
with imaging sequences from the AIA on board SDO. Spectra from EIS were
analyzed in two spectral windows, \FeXII 195.12 \AA and \FeXIII 202.04 \AA
along with the images from AIA in 171 \AA and 193 \AA channels. We find short
(3 min) and long (9 min) periods at two different locations.
Shorter periods show oscillations in all the three line parameters and the
longer ones only in intensity and Doppler shift but not in line width. Line
profiles at both these locations do not show any visible blue-shifted component
and can be fitted well with a single Gaussian function along with a polynomial
background. Results using co-spatial and co-temporal data from AIA/SDO do not
show any significant peak corresponding to shorter periods, but longer periods
are clearly observed in both 171 \AA and 193 \AA channels. Space-time analysis
in these fan loops using images from AIA/SDO show alternate slanted ridges of
positive slope, indicative of outward propagating disturbances. The apparent
propagation speeds were estimated to be 83.5 1.8 \kms and 100.5 4.2
\kms, respectively, in the 171 \AA and 193 \AA channels. Observed short period
oscillations are suggested to be caused by the simultaneous presence of more
than one MHD mode whereas the long periods are suggested as signatures of slow
magneto-acoustic waves. In case of shorter periods, the amplitude of
oscillation is found to be higher in EIS lines with relatively higher
temperature of formation. Longer periods, when observed from AIA, show a
decrease of amplitude in hotter AIA channels which might indicate damping due
to thermal conduction owing to their acoustic nature.Comment: Accepted for publication in Solar Physic
A spectral scheme for Kohn-Sham density functional theory of clusters
Starting from the observation that one of the most successful methods for
solving the Kohn-Sham equations for periodic systems -- the plane-wave method
-- is a spectral method based on eigenfunction expansion, we formulate a
spectral method designed towards solving the Kohn-Sham equations for clusters.
This allows for efficient calculation of the electronic structure of clusters
(and molecules) with high accuracy and systematic convergence properties
without the need for any artificial periodicity. The basis functions in this
method form a complete orthonormal set and are expressible in terms of
spherical harmonics and spherical Bessel functions. Computation of the occupied
eigenstates of the discretized Kohn-Sham Hamiltonian is carried out using a
combination of preconditioned block eigensolvers and Chebyshev polynomial
filter accelerated subspace iterations. Several algorithmic and computational
aspects of the method, including computation of the electrostatics terms and
parallelization are discussed. We have implemented these methods and algorithms
into an efficient and reliable package called ClusterES (Cluster Electronic
Structure). A variety of benchmark calculations employing local and non-local
pseudopotentials are carried out using our package and the results are compared
to the literature. Convergence properties of the basis set are discussed
through numerical examples. Computations involving large systems that contain
thousands of electrons are demonstrated to highlight the efficacy of our
methodology. The use of our method to study clusters with arbitrary point group
symmetries is briefly discussed.Comment: Manuscript submitted (with revisions) to Journal of Computational
Physic
- …