93 research outputs found

    A mode-coupling theory analysis of the rotation driven translational motion of aqueous polyatomic ions

    Full text link
    In contrast to simple monatomic alkali and halide ions, complex polyatomic ions like nitrate, acetate, nitrite, chlorate etc. have not been studied in any great detail. Experiments have shown that diffusion of polyatomic ions exhibits many remarkable anomalies, notable among them is the fact that polyatomic ions with similar size show large difference in their diffusivity values. This fact has drawn relatively little interest in scientific discussions. We show here that a mode-coupling theory (MCT) can provide a physically meaningful interpretation of the anomalous diffusivity of polyatomic ions in water, by including the contribution of rotational jumps on translational friction. The two systems discussed here, namely aqueous nitrate ion and aqueous acetate ion, although have similar ionic radii exhibit largely different diffusivity values due to the differences in the rate of their rotational jump motions. We have further verified the mode-coupling theory formalism by comparing it with experimental and simulation results that agrees well with the theoretical prediction

    Reducing Risk of Cardiovascular Disease: Exploring the Effects of Quercetin on the Contractile Force of Vascular Smooth Muscle

    Get PDF
    Calcium plays an important role in regulating the contraction of smooth muscles. Membrane potential of the smooth muscles regulates the smooth muscle contractility through variation in Ca2+ influx with the assistance of the voltage-operated Ca2+ channel. Using the porcine pulmonary arteries (PPA) as the model system, the effect of the antioxidant quercetin on the regulation of pulmonary arteries was investigated in the presence and absence of calcium. It was hypothesized that quercetin reduces the contractile force in PPA by limiting Ca2+ release from the sarcoplasmic reticulum (SR) without imposing any effect on the voltage-operated channel (VOC). However, the biochemical pathway of quercetin is still unknown. In this study, it is shown that PPA contracts both in the presence and absence of Ca2+. Further investigations are required to study the exact effects of KCl in 0 Ca2+ to completely break down the biochemical pathway of quercetin and reassure its effect on the SR. Since quercetin demonstrates reduction in contractile force, it has high potential to provide a solution for the side effects of hypertension, which is a complex heterogeneous disorder that can coexist with other cardiovascular abnormalities

    SUSTAINABILITY OF THE PROBIOTIC LACTOBACILLUS CASEI IN FORTIFIED INDIAN MILK CAKES UNDER DIFFERENT PRESERVATION CONDITIONS-EFFECTS OF CO-IMMOBILIZATION OF L. CASEI AND COMMERCIAL PREBIOTIC INULIN (CHICORY BASED) AND MILLET INULIN

    Get PDF
    Objective: The objective of the present article is to identify the most suitable Indian millet inulin for the growth of probiotic Lactobacillus casei and to evaluate the effects of the fortification vectors (probiotics and probiotic-prebiotic combination in immobilized conditions) and immobilization methods on the sustainability of L. casei in a fortified Indian sweet (milk cake) preserved under different conditions.Methods: Inulin was extracted from pearl, finger and great millets. The concentrations of L. casei, grown on three millet inulins, were compared in 24 h batch culture. The L. casei and probiotic-prebiotic combinations namely L. casei-commercial inulin and L. casei-pearl millet inulin were immobilized using entrapment, external and internal microencapsulation methods. The Indian milk cake samples were fortified with the immobilized probiotic cells, co-immobilized probiotic-prebiotic combinations. The fortified samples were preserved at different conditions (temperature: 4 °C and-20 °C; Time: 1-4 w). The sustainability of L. casei in the preserved samples was determined using spread plate method and the cell concentrations were compared among all fortified samples.Results: Pearl millet inulin is determined to be the most suitable millet inulin for the growth of L. casei. The synergistic combination of L. casei–pearl millet inulin, co-immobilized with internal gelation technique is the best fortification vector for the viability of L. casei in preserved food samples.Conclusion: The L. casei, co-immobilized with pearl millet inulin through internal gelation technique, can be utilized as an effective fortification vector for the sustainability of probiotic cells in preserved Indian milk cakes and similar food samples

    Energy Efficient Data Transmission Scheme for Internet of Things Applications

    Get PDF
    Recently, there is a rapid increase in the use of Internet of Things (IoT) technology, and it is envisaged that in the forthcoming days, billions of devices and things are going to be interconnected among themselves with the help of Internet. To make this technology self-sustainable, there is a need for an incessant energy supply that can be achieved through green energy harvesting. IoT has attracted the attention of researchers as well as practitioners all over the globe by serving as an important architecture for communication systems, but the terminal devices used in IoT are resource-constrained, which results in low energy storage capacity and low computing power. Among several tasks that need to be performed at the level of IoT node, the data transmission is the most energy intensive phase. To provide continuous power to nodes used in IoT systems, it is imperative that the available energy source should be used judiciously and in an optimized manner. In this paper, an energy efficient data transmission scheme for IoT devices has been proposed. The result obtained through extensive experiments depicts that there is a high potential for saving energy during the process of data transmission
    corecore