7 research outputs found
Towards the interpretability of machine learning predictions for medical applications targeting personalised therapies: A cancer case survey
Artificial Intelligence is providing astonishing results, with medicine being one of its fa-vourite playgrounds. Machine Learning and, in particular, Deep Neural Networks are behind this revolution. Among the most challenging targets of interest in medicine are cancer diagnosis and therapies but, to start this revolution, software tools need to be adapted to cover the new require-ments. In this sense, learning tools are becoming a commodity but, to be able to assist doctors on a daily basis, it is essential to fully understand how models can be interpreted. In this survey, we analyse current machine learning models and other in-silico tools as applied to medicine—specifi-cally, to cancer research—and we discuss their interpretability, performance and the input data they are fed with. Artificial neural networks (ANN), logistic regression (LR) and support vector machines (SVM) have been observed to be the preferred models. In addition, convolutional neural networks (CNNs), supported by the rapid development of graphic processing units (GPUs) and high-performance computing (HPC) infrastructures, are gaining importance when image processing is feasible. However, the interpretability of machine learning predictions so that doctors can understand them, trust them and gain useful insights for the clinical practice is still rarely consid-ered, which is a factor that needs to be improved to enhance doctors’ predictive capacity and achieve individualised therapies in the near future
Advances in distributed computing with modern drug discovery
Introduction: Computational chemistry dramatically accelerates the drug discovery process and high-performance computing (HPC) can be used to speed up the most expensive calculations. Supporting a local HPC infrastructure is both costly and time-consuming, and, therefore, many research groups are moving from in-house solutions to remote-distributed computing platforms. Areas covered: The authors focus on the use of distributed technologies, solutions, and infrastructures to gain access to HPC capabilities, software tools, and datasets to run the complex simulations required in computational drug discovery (CDD). Expert opinion: The use of computational tools can decrease the time to market of new drugs. HPC has a crucial role in handling the complex algorithms and large volumes of data required to achieve specificity and avoid undesirable side-effects. Distributed computing environments have clear advantages over in-house solutions in terms of cost and sustainability. The use of infrastructures relying on virtualization reduces set-up costs. Distributed computing resources can be difficult to access, although web-based solutions are becoming increasingly available. There is a trade-off between cost-effectiveness and accessibility in using on-demand computing resources rather than free/academic resources. Graphics processing unit computing, with its outstanding parallel computing power, is becoming increasingly important