308 research outputs found
The Effect of Platinum-coatings on Hydrogen- and Water-absorption and Desorption Characteristics of Lithium Zirconate
AbstractHydrogen (H)- and water (H2O)-storage and desorption characteristics of 25nm thick Pt films onLi2ZrO3composite materials, exposed to normal air at room temperature, have been investigated by means of elastic recoil detection (ERD), Rutherford backscattering spectrometry (RBS), weight gain measurement (WGM), and thermal desorption spectroscopy (TDS) techniques. It was found by the ERD and TDS that H and H2O were absorbed into the Pt-coated Li2ZrO3 in air at room temperature and desorbed from it in vacuum at much low temperatures of approximately 317 and 309K, respectively. In addition, the WGM and TDS spectra revealed that the absorption and desorption characters ofsome gases such as CH4, CO, and CO2including H as well as H2Ointo the Li2ZrO3 bulk were improved by Pt deposition
Separation of VUV/UV photons and reactive particles in the effluent of a He/O2 atmospheric pressure plasma jet
Cold atmospheric pressure plasmas can be used for treatment of living tissues
or for inactivation of bacteria or biological macromolecules. The treatment is
usually characterized by a combined effect of UV and VUV radiation, reactive
species, and ions. This combination is usually beneficial for the effectiveness
of the treatment but it makes the study of fundamental interaction mechanisms
very difficult. Here we report on an effective separation of VUV/UV photons and
heavy reactive species in the effluent of a micro scale atmospheric pressure
plasma jet (-APPJ). The separation is realized by an additional flow of
helium gas under well-defined flow conditions, which deflects heavy particles
in the effluent without affecting the VUV and UV photons. Both components of
the effluent, the photons and the reactive species, can be used separately or
in combination for sample treatment. The results of treatment of a model plasma
polymer film and vegetative Bacillus subtilis and Escherichia coli cells are
shown and discussed. A simple model of the He gas flow and reaction kinetics of
oxygen atoms in the gas phase and at the surface is used to provide a better
understanding of the processes in the plasma effluent. The new jet
modification, called X-Jet for its appearance, will simplify the investigation
of interaction mechanisms of atmospheric pressure plasmas with biological
samples.Comment: 10 pages, 7 figures, submitted to Journal of Physics D: Applied
Physic
Unconventional magnetism in all-carbon nanofoam
We report production of nanostructured carbon foam by a high-repetition-rate,
high-power laser ablation of glassy carbon in Ar atmosphere. A combination of
characterization techniques revealed that the system contains both sp2 and sp3
bonded carbon atoms. The material is a novel form of carbon in which
graphite-like sheets fill space at very low density due to strong hyperbolic
curvature, as proposed for ?schwarzite?. The foam exhibits ferromagnetic-like
behaviour up to 90 K, with a narrow hysteresis curve and a high saturation
magnetization. Such magnetic properties are very unusual for a carbon
allotrope. Detailed analysis excludes impurities as the origin of the magnetic
signal. We postulate that localized unpaired spins occur because of topological
and bonding defects associated with the sheet curvature, and that these spins
are stabilized due to the steric protection offered by the convoluted sheets.Comment: 14 pages, including 2 tables and 7 figs. Submitted to Phys Rev B 10
September 200
Nanomechanical Properties and Phase Transitions in a Double-Walled (5,5)@(10,10) Carbon Nanotube: ab initio Calculations
The structure and elastic properties of (5,5) and (10,10) nanotubes, as well
as barriers for relative rotation of the walls and their relative sliding along
the axis in a double-walled (5,5)@(10,10) carbon nanotube, are calculated using
the density functional method. The results of these calculations are the basis
for estimating the following physical quantities: shear strengths and diffusion
coefficients for relative sliding along the axis and rotation of the walls, as
well as frequencies of relative rotational and translational oscillations of
the walls. The commensurability-incommensurability phase transition is
analyzed. The length of the incommensurability defect is estimated on the basis
of ab initio calculations. It is proposed that (5,5)@(10,10) double-walled
carbon nanotube be used as a plain bearing. The possibility of experimental
verification of the results is discussed.Comment: 14 page
Electronic states and quantum transport in double-wall carbon nanotubes
Electronic states and transport properties of double-wall carbon nanotubes
without impurities are studied in a systematic manner. It is revealed that
scattering in the bulk is negligible and the number of channels determines the
average conductance. In the case of general incommensurate tubes, separation of
degenerated energy levels due to intertube transfer is suppressed in the energy
region higher than the Fermi energy but not in the energy region lower than
that. Accordingly, in the former case, there are few effects of intertube
transfer on the conductance, while in the latter case, separation of
degenerated energy levels leads to large reduction of the conductance. It is
also found that in some cases antiresonance with edge states in inner tubes
causes an anomalous conductance quantization, , near the Fermi
energy.Comment: 24 pages, 13 figures, to be published in Physical Review
Grafting of 4-(2,4,6-Trimethylphenoxy)benzoyl onto Single-Walled Carbon Nanotubes in Poly(phosphoric acid) via Amide Function
Single-walled carbon nanotubes (SWCNTs), which were commercial grade containing 60–70 wt% impurity, were treated in a mild poly(phosphoric acid) (PPA). The purity of PPA treated SWCNTs was greatly improved with or without little damage to SWCNTs framework and stable crystalline carbon particles. An amide model compound, 4-(2,4,6-trimethylphenoxy)benzamide (TMPBA), was reacted with SWCNTs in PPA with additional phosphorous pentoxide as “direct” Friedel–Crafts acylation reaction to afford TMPBA functionalized SWCNTs. All evidences obtained from Fourier-transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, scanning electron microcopy, and transmission electron microscopy strongly supported that the functionalization of SWCNTs with benzamide was indeed feasible
- …