100 research outputs found

    Stability indicating RP-HPLC method development and validation for the simultaneous determination of Sofosbuvir and Velpatasvir in tablet dosage forms

    Get PDF
    Stability indicating RP-HPLC method was developed for the simultaneous quantitation of Sofosbuvir and Velpatasvir in its pharmaceutical dosage form and validated. The drugs were separated on Discovery C18 (150mm x 4.6mm, 5μ) column using 0.01N potassium dihydrogen phosphate buffer and acetonitrile (50:50%v/v) as mobile phase on isocratic mode. The mobile phase is pump into the column at flow rate of 1.0ml/min and column oven temperature is maintained at 30ºC. The drugs were detected at a wavelength 240nm. The retention time for Sofosbuvir and Velpatasvir were found to be 2.32min and 3.34min respectively. The developed method is validated in accordance with ICH guidelines. The method was found to be accurate, precise, specific and robust. The method obeys Beer’s law at a concentration range of 100μg/ml – 600μg/ml of Sofosbuvir and 25μg/ml – 150μg/ml of Velpatasvir, with correlation coefficient of 0.999 for both the drugs. The drugs were found to be stable and less prone to degradation when they are subjected to various stress conditions

    NEW STABILITY-INDICATING ULTRA PERFORMANCE LIQUID CHROMATOGRAPHY METHOD DEVELOPMENT AND VALIDATION OF LENVATINIB MESYLATE IN BULK DRUG AND PHARMACEUTICAL DOSAGE FORMS

    Get PDF
    Objective: The objective of the present study was to develop and validate a new stability-indicating method for the quantification of lenvatinib mesylate in bulk drug and pharmaceutical dosage form using ultra performance liquid chromatography (UPLC).Methods: The optimized chromatographic conditions for elution of drug included UPLC HSS C18 (100 mm × 2.1 mm, 1.8 m) column, mixture of 0.1% orthophosphoric acid and acetonitrile (50:50 v/v%) mobile phase run on an isocratic mode at a flow rate of 0.3 mL/min, 240 nm detection wavelength, and column oven temperature maintained at 30°C.Results: The retention time for lenvatinib was found to be 1.24 min. The developed method was validated for various validation parameters in accordance with the International Conference on Harmonization guidelines. The method obeyed Beer's law in the concentration range of 2.5– 15 μg/mL with a correlation coefficient of 0.9996. The percentage relative standard deviation and percentage recovery were determined to be 0.4 and 99.66–100.30%, respectively. The developed method was found to be accurate, precise, specific, linear, rugged, and robust. Forced degradation studies were conducted by exposing the drug to diverse stress conditions such as acidic, basic, peroxide, neutral, photolytic, and thermal conditions. The net degradation was obtained within the limits.Conclusion: The developed method for the estimation of lenvatinib can be employed to routine analysis of pharmaceutical dosage form

    Gastrointestinal adenocarcinomas of the esophagus, stomach, and colon exhibit distinct patterns of genome instability and oncogenesis

    Get PDF
    A more detailed understanding of the somatic genetic events that drive gastrointestinal adenocarcinomas is necessary to improve diagnosis and therapy. Using data from high-density genomic profiling arrays, we conducted an analysis of somatic copy-number aberrations in 486 gastrointestinal adenocarcinomas including 296 esophageal and gastric cancers. Focal amplifications were substantially more prevalent in gastric/esophageal adenocarcinomas than colorectal tumors. We identified 64 regions of significant recurrent amplification and deletion, some shared and others unique to the adenocarcinoma types examined. Amplified genes were noted in 37% of gastric/esophageal tumors, including in therapeutically targetable kinases such as ERBB2, FGFR1, FGFR2, EGFR, and MET, suggesting the potential use of genomic amplifications as biomarkers to guide therapy of gastric and esophageal cancers where targeted therapeutics have been less developed compared with colorectal cancers. Amplified loci implicated genes with known involvement in carcinogenesis but also pointed to regions harboring potentially novel cancer genes, including a recurrent deletion found in 15% of esophageal tumors where the Runt transcription factor subunit RUNX1 was implicated, including by functional experiments in tissue culture. Together, our results defined genomic features that were common and distinct to various gut-derived adenocarcinomas, potentially informing novel opportunities for targeted therapeutic interventions

    Clinicopathologic characteristics of high expression of Bmi-1 in esophageal adenocarcinoma and squamous cell carcinoma

    Get PDF
    Background: High expression of Bmi-1, a key regulatory component of the polycomb repressive complex-1, has been associated with many solid and hematologic malignancies including esophageal squamous cell carcinoma. However, little is known about the role of Bmi-1 in esophageal adenocarcinoma. The aim of this study is to investigate the amplification and high expression of Bmi-1 and the associated clinicopathologic characteristics in esophageal adenocarcinoma and squamous cell carcinoma.Methods: The protein expression level of Bmi-1 was detected by immunohistochemistry (IHC) from tissue microarrays (TMA) constructed at the University of Rochester from using tissues accrued between 1997 and 2005. Types of tissues included adenocarcinoma, squamous cell carcinoma and precancerous lesions. Patients' survival data, demographics, histologic diagnoses and tumor staging data were collected. The intensity (0-3) and percentage of Bmi-1 expression on TMA slides were scored by two pathologists. Genomic DNA from 116 esophageal adenocarcinoma was analyzed for copy number aberrations using Affymetrix SNP 6.0 arrays. Fisher exact tests and Kaplan-Meier methods were used to analyze data.Results: By IHC, Bmi-1 was focally expressed in the basal layers of almost all esophageal squamous mucosa, which was similar to previous reports in other organs related to stem cells. High Bmi-1 expression significantly increased from squamous epithelium (7%), columnar cell metaplasia (22%), Barrett's esophagus (22%), to low- (45%) and high-grade dysplasia (43%) and adenocarcinoma (37%). The expression level of Bmi-1 was significantly associated with esophageal adenocarcinoma differentiation. In esophageal adenocarcinoma, Bmi-1 amplification was detected by DNA microarray in a low percentage (3%). However, high Bmi-1 expression did not show an association with overall survival in both esophageal adenocarcinoma and squamous cell carcinoma.Conclusions: This study demonstrates that high expression Bmi-1 is associated with esophageal adenocarcinoma and precancerous lesions, which implies that Bmi-1 plays an important role in early carcinogenesis in esophageal adenocarcinoma. © 2012 Choy et al.; licensee BioMed Central Ltd

    Centrifugal melt spinning of polyvinylpyrrolidone (PVP)/triacontene copolymer fibres

    Get PDF
    Polyvinylpyrrolidone/1-triacontene (PVP/TA) copolymer fibre webs produced by centrifugal melt spinning were studied to determine the influence of jet rotation speed on morphology and internal structure as well as their potential utility as adsorbent capture media for disperse dye effluents. Fibres were produced at 72 C with jet head rotation speeds from 7000 to 15,000 r min-1. The fibres were characterised by means of SEM, XRD and DSC. Adsorption behaviour was investigated by means of an isothermal bottle point adsorption study using a commercial disperse dye, Dianix AC-E. Through centrifugal spinning nanofibers and microfibers could be produced with individual fibres as fine as 200–300 nm and mean fibre diameters of ca. 1–2 lm. The PVP/TA fibres were mechanically brittle with characteristic brittle tensile fracture regions observed at the fibre ends. DSC and XRD analyses suggested that this brittleness was linked to the graft chain crystallisation where the PVP/TA was in the form of a radial brush copolymer. In this structure, the triacontene branches interlock and form small lateral crystals around an amorphous backbone. As an adsorbent, the PVP/TA fibres were found to adsorb 35.4 mg g-1 compared to a benchmark figure of 30.0 mg g-1 for a granular-activated carbon adsorbent under the same application conditions. PVP/TA is highly hydrophobic and adsorbs disperse dyes through the strong ‘‘hydrophobic bonding’’ interaction. Such fibrous assemblies may have applications in the targeted adsorption and separation of non-polar species from aqueous or polar environments

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
    corecore