93 research outputs found

    A note on Probably Certifiably Correct algorithms

    Get PDF
    Many optimization problems of interest are known to be intractable, and while there are often heuristics that are known to work on typical instances, it is usually not easy to determine a posteriori whether the optimal solution was found. In this short note, we discuss algorithms that not only solve the problem on typical instances, but also provide a posteriori certificates of optimality, probably certifiably correct (PCC) algorithms. As an illustrative example, we present a fast PCC algorithm for minimum bisection under the stochastic block model and briefly discuss other examples

    Sharp nonasymptotic bounds on the norm of random matrices with independent entries

    Full text link
    We obtain nonasymptotic bounds on the spectral norm of random matrices with independent entries that improve significantly on earlier results. If XX is the n×nn\times n symmetric matrix with XijN(0,bij2)X_{ij}\sim N(0,b_{ij}^2), we show that EXmaxijbij2+maxijbijlogn.\mathbf{E}\Vert X\Vert \lesssim\max_i\sqrt{\sum_jb_{ij}^2}+\max _{ij}\vert b_{ij}\vert \sqrt{\log n}. This bound is optimal in the sense that a matching lower bound holds under mild assumptions, and the constants are sufficiently sharp that we can often capture the precise edge of the spectrum. Analogous results are obtained for rectangular matrices and for more general sub-Gaussian or heavy-tailed distributions of the entries, and we derive tail bounds in addition to bounds on the expected norm. The proofs are based on a combination of the moment method and geometric functional analysis techniques. As an application, we show that our bounds immediately yield the correct phase transition behavior of the spectral edge of random band matrices and of sparse Wigner matrices. We also recover a result of Seginer on the norm of Rademacher matrices.Comment: Published at http://dx.doi.org/10.1214/15-AOP1025 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Open problem: Tightness of maximum likelihood semidefinite relaxations

    Full text link
    We have observed an interesting, yet unexplained, phenomenon: Semidefinite programming (SDP) based relaxations of maximum likelihood estimators (MLE) tend to be tight in recovery problems with noisy data, even when MLE cannot exactly recover the ground truth. Several results establish tightness of SDP based relaxations in the regime where exact recovery from MLE is possible. However, to the best of our knowledge, their tightness is not understood beyond this regime. As an illustrative example, we focus on the generalized Procrustes problem

    Tightness of the maximum likelihood semidefinite relaxation for angular synchronization

    Full text link
    Maximum likelihood estimation problems are, in general, intractable optimization problems. As a result, it is common to approximate the maximum likelihood estimator (MLE) using convex relaxations. In some cases, the relaxation is tight: it recovers the true MLE. Most tightness proofs only apply to situations where the MLE exactly recovers a planted solution (known to the analyst). It is then sufficient to establish that the optimality conditions hold at the planted signal. In this paper, we study an estimation problem (angular synchronization) for which the MLE is not a simple function of the planted solution, yet for which the convex relaxation is tight. To establish tightness in this context, the proof is less direct because the point at which to verify optimality conditions is not known explicitly. Angular synchronization consists in estimating a collection of nn phases, given noisy measurements of the pairwise relative phases. The MLE for angular synchronization is the solution of a (hard) non-bipartite Grothendieck problem over the complex numbers. We consider a stochastic model for the data: a planted signal (that is, a ground truth set of phases) is corrupted with non-adversarial random noise. Even though the MLE does not coincide with the planted signal, we show that the classical semidefinite relaxation for it is tight, with high probability. This holds even for high levels of noise.Comment: 2 figure
    corecore