3 research outputs found

    Synthesis and characterization of bulk and thin film antimony-selenium phase change alloys

    Full text link
    Phase change alloys have recently gained increasing attention due to their application in developing phase change random memory (PRAM) devices, as Flash memory based devices are rapidly approaching their technological limitations. The most dominant features of PRAM devices are its non-volatile nature, compatible with present day IC\u27s manufacturing process, high density, fast operation, low power consumption etc; Devices built on binary alloys such as Antimony - Selenium (SbSe) exhibit certain superior properties such as fast operation, reduced power consumption, economical etc. compared to that of ternary alloy (GST). In order to understand this behavior in detail, bulk SbxSe 100-x (40 ≤ x ≤ 70) alloys are synthesized and deposited as thin films on silicon (100) plane substrate. Series of experiments such as X-ray diffraction analysis (XRD), Energy dispersive X-ray diffraction (EDAX), Spectroscopic Ellipsometer, Hall test experiments are carried out to characterize both the bulk and thin films. EDAX experiments show the deviation between bulk and thin films compositions is less than 10%. Diffraction patterns of bulk exhibit orthorhombic structure, i.e., Sb2Se3 type where as thin films demonstrate amorphous behavior. Impact of annealing on thin films is studied by heating the films to 170°C under argon (Ar) ambience. Post annealing results of Sb40Se60 thin films show the crystal structure is orthorhombic and crystallization temperature (Tc) increases with increase in Sb content of the compound. Ellipsometry and Hall measurements of annealed films exhibit high refractive index (n), low extinction coefficient (k) and high carrier concentration with associated low carrier mobility. Further the conductivity of annealed Sb40Se60 thin films switches from p to n type

    Structure and Optical properties of Transition Metal Dichalcogenides (TMDs) – MX2 (M = Mo, W & X = S, Se) under High Pressure and High Temperature conditions

    Full text link
    Layered structured materials such as transition metal dichalcogenides (TMDs) have gained immense interest in recent times due to their exceptional structural, electrical and optical properties. Recent studies show semiconducting TMDs such as MX2 (M= Mo, W & X = S, Se) could be used as potential shock absorbing material, which has resulted in extensive studies on structural stability of these materials under the influence of high pressure. Understanding the structural stability of transition metal dichalcogenides (TMDs) such as MoS2, MoSe2, WS2, and WSe2 under high pressure has been very challenging due to contradicting observations and interpretations reported in the past. Hence, the main objective of this work is to study the crystal structure and optical properties of bulk MX2 at high hydrostatic pressures up to 51 GPa using a diamond anvil cell with synchrotron radiation in addition to high pressure Raman spectroscopic and high temperature X-ray diffraction (XRD) experiments. Crystal structures of MX2 materials are observed to be stable up to 500 oC with nonlinear thermal coefficients of expansion. Results of high pressure experiments show a pressure induced isostructural hexagonal distortion to a 2Ha-hexagonal P63/mmc phase, in MoS2 around 26 GPa as predicted by theoretical calculations reported earlier. No pressure induced phase transformation is observed in other MX2 (MoSe2, WS2, WSe2). A semi empirical model based on the energy of interaction of bond electrons is proposed to explain the observed inconsistency between MoS2 and other TMDs studied. Using this model, it is shown that except MoS2, no other MX2 within the scope of this study undergoes pressure induced phase transition in the pressure range 0 – 50 GPa. High pressure Raman results show continuous red shifts in dominant vibrational modes with increase in pressure in MX2. Additionally, emergence of a new peak, namely ‘d - band’ associated with 2Ha structure in MoS2 supports the observation of a isostructural phase transition in high pressure X-ray diffraction experiments. In addition to the studies on bulk MoS2 material, thin film (approximately 100 nm thicknesses) is successfully fabricated via DC magnetron sputtering system and sulfurization technique
    corecore