28 research outputs found

    Efficiency enhancement in dye sensitized solar cells based on PAN gel electrolyte with Pr4NI + MgI2 binary iodide salt mixture

    No full text
    The effect of using a binary iodide salt mixture in N719 dye-sensitized TiO2 solar cells (DSSCs) is investigated. The cells use tetrapropylammonium iodide (Pr4NI) and magnesium iodide (MgI2) in a plasticized polyacrylonitrile gel in glass/FTO/nano-porous TiO2/gel, I-2/Pt/FTO/glass solar cell structure. The salt composition in the gel electrolyte is varied to optimize the efficiency of DSSCs. The DSSCs with MgI2 or Pr4NI as the only iodide salt showed the efficiencies 2.56 and 4.16 %, respectively, under AM 1.5 (100 mW cm(-2)) illumination while the DSSC with mixed cations with 18.4:81.6 MgI2:Pr4NI molar ratio shows the highest efficiency of 5.18 %. Thus the efficiency enhancement, relative to the high efficiency end member is about 25 %. DC polarization measurements establish the predominantly ionic behavior of the electrolytes, and show that the variation of efficiency with salt composition correlates with the change in short circuit photocurrent density (J (sc)), which appears to be governed by the iodide ion conductivity. It is also found that J (sc) correlates with the iodide ion transference number estimated from DC polarization data taken with non-blocking iodine electrodes. This study suggests that binary iodide mixtures may be used to obtain efficiency enhancement in different types of DSSCs based on polymeric, gel, or solvent electrolytes

    Electrical and complex dielectric behaviour of composite polymer electrolyte based on PEO, alumina and tetrapropylammonium iodide

    Get PDF
    In this study, the electrical, dielectric and morphological analysis of composite solid polymer electrolytes containing polyethylene oxide, alumina nano-fillers and tetrapropylammonium iodide are conducted. The temperature dependence of conductivity shows activation energy of 0.23, 0.20 and 0.29 eV for electrolytes containing 0, 5 and 15 wt.% alumina, respectively, when data fitted to the Arrhenius equation. These activation energy values are in good agreement with those determined from dielectric measurements. The result confirms the fact that conductivity is activated by both the mobility and the charge carrier density. The conductivity isotherms demonstrated the existence of two peaks, at 5 and 15 wt.% Al2O3 composition. The highest conductivity values of 2.4 × 10−4, 3.3 × 10−4 and 4.2 × 10−4 S cm−1 are obtained for the sample with 5 wt.% Al2O3 at 0, 12 and 24 °C, respectively, suggesting an enhancement of conductivity compared with that of alumina free samples

    Polyacrylonitrile-based gel polymer electrolytes for dye-sensitized solar cells: a review

    No full text
    corecore