20 research outputs found

    Assessment of the Role of Free-Living and Farmed Fallow Deer (Dama dama) as A Potential Source of Human Infection with Multiple-Drug-Resistant Strains of Yersinia enterocolitica and Yersinia pseudotuberculosis

    No full text
    Yersinia enterocolitica and Y. pseudotuberculosis are Gram-negative, facultative anaerobic bacteria that cause yersiniosis—one of the most important zoonotic diseases of the digestive tract. The aim of this study was to determine the prevalence of potentially human-pathogenic Y. enterocolitica and Y. pseudotuberculosis strains in free-living and farmed fallow deer, and to evaluate their sensitivity to chemotherapeutics. A total of 372 rectal swabs were analyzed, including 262 from free-living and 110 from farmed fallow deer. Due to the psychrophilic properties of Yersinia, two samples were collected from each animal. Seven Y. enterocolitica strains were isolated from free-living fallow deer, while two strains were isolated from farmed fallow deer. Yersinia pseudotuberculosis strains were not identified. All isolated Y. enterocolitica strains were ystB-positive, and phylogenetic analysis based on the nucleotide sequences of this gene revealed the presence of two phylogenetic groups. Yersinia enterocolitica strains isolated from fallow deer belonged to biotype 1A, and serotyping analysis demonstrated that the vast majority did not agglutinate with any diagnostic sera. All strains were multiple drug resistant and were not sensitive to at least four of the tested chemotherapeutics (amoxicillin with clavulanic acid, ampicillin, cefalexin, and streptomycin). One Y. enterocolitica strain isolated from a free-living animal was resistant to nine out of the 13 analyzed chemotherapeutics and was intermediately sensitive to the four remaining chemotherapeutics. The highest sensitivity was noted in case of ciprofloxacin (five strains) and trimethoprim-sulfamethoxazole (three strains). Only one strain isolated from a free-living animal was sensitive to three out of the 13 examined antibiotics, whereas the remaining strains were sensitive to only one drug or were not sensitive to any of the chemotherapeutics used. The results of this study indicate that multiple drug-resistant Y. enterocolitica strains can be carried by free-living and farmed fallow deer. This observation gives serious cause for concern because the meat of fallow deer and other ruminants is often consumed semi-raw (steak) or raw (tartar steak)

    Yersiniosis – zoonotic foodborne disease of relevance to public health

    No full text
    Introduction Y. enterocolitica is the causative agent of yersiniosis – a foodborne zoonosis with substantial importance to public health. Y. enterocolitica is widespread in the environment and animal populations, posing a potential source of infection to humans. Objective. Presentation of yersiniosis as a zoonotic foodborne disease of relevance to public health. State of knowledge Swine play an important role as a reservoir of Y. enterocolitica and insufficiently thermally processed pork is the main source of infection to humans. The correlation between strains isolated from pigs and from clinical cases of human yersiniosis has been sufficiently proven. Yersiniosis usually appears with gastrointestinal disturbances in children, whereas in adults it manifests in a pseudo-appendix form. The extra-enteric form of yersiniosis is rare. Classical bacteriological methods used for classifying Y. enterocolitica as pathogenic does not take into account the new aspects of the pathogenesis of yersiniosis. The examples are biotype 1A strains, commonly regarded as non-pathogenic, although they are increasingly often isolated from clinical cases of yersiniosis. Molecular methods seem much more effective and accurate in the diagnostic. New diagnostic tools such as real-time PCR, allows not only qualitative examination, but also quantitative evaluation of genes expression level, or single nucleotide polymorphism detection. Conclusions Yersiniosis is an important food-borne zoonosis with wide range of clinical symptoms. Considering the fact that pork is the main source of infection for humans, public information campaigns seems to be an important element of the preventive measures against Y. enterocolitica infections

    Evaluation of the Correlation between the mRNA Expression Levels of ystA and ymoA Genes in Y. enterocolitica Strains with Different Enterotoxic Properties

    No full text
    Yersinia enterocolitica is one of the main causative agents of human diarrhea. Pigs are a reservoir and the most common source of infection for humans. The aim of this study was to analyze the expression of ystA and ymoA genes in Y. enterocolitica strains with different enterotoxic properties, isolated from humans and pigs. The experiment involved two groups of Y. enterocolitica strains producing and not producing enterotoxin YstA, which were isolated from humans and pigs. All strains were ystA- and ymoA-positive. The expression of ystA and ymoA genes was analyzed by quantitative real-time PCR (qPCR). The relative expression level of the ystA gene was significantly higher than the expression level of the ymoA gene in Y. enterocolitica strains isolated from humans with clinical symptoms of yersiniosis. In other strains, a significant decrease in ystA gene transcription was observed, and the relative expression level of the ymoA gene was significantly higher than the expression level of the ystA gene. Statistically significant differences were not observed in either group of strains isolated from pigs. The results of our study revealed a correlation between mRNA expression levels of ystA and ymoA genes in Y. enterocolitica strains isolated from humans

    Lotmaria Passim As Third Parasite Gastrointestinal Tract of Honey Bees Living in Tree Trunk

    No full text
    Honey bees (Apis mellifera L.) inhabiting trees in forests are not managed by humans or treated for pathogens; therefore, many researchers and beekeepers believe that viral, bacterial, and parasitic diseases may lead to their decline. The aim of the study was to evaluate the prevalence of L. passim and Nosema spp. in feral colonies by real-time PCR. This study was performed on twenty-six samples of honey bees inhabiting tree trunks in north-eastern Poland. One sample consisted of sixty worker bee abdomens collected from hollow trees. Honey bees were sampled only from naturally colonized sites. Amplicons of the three evaluated pathogens were detected in twenty of the twenty-six tested samples. A significant correlation was observed between infection with three pathogens (N. apis, N. ceranae, L. passim) (r = 0.84) compared to infection with only two pathogens (N. apis and N. ceranae) (r = 0.49). N. ceranae was the predominant pathogen, but infections with various severity caused by L. passim were also noted in fourteen of the twenty-six tested samples. In view of the general scarcity of epidemiological data concerning coinfections with Nosema spp. and L. passim in honey bees in tree trunks in other countries, further research is needed to confirm the effect of concurrent pathogenic infections on the decline of bee colonies

    Isolation, characterization and antimicrobial resistance of Yersinia enterocolitica from Polish cattle and their carcasses

    No full text
    Abstract Background Yersinia enterocolitica is a heterogeneous bacterial species that has been divided into six biotypes and more than 70 serotypes. Each year, the European Food Safety Authority classifies yersiniosis caused by Y. enterocolitica as one of the most important zoonotic diseases. The prevalence of Y. enterocolitica in cattle has not been thoroughly analyzed in Poland, and beef and bovine carcasses contaminated with antimicrobial resistant Y. enterocolitica pose a health risk for both, farm workers and consumers. Therefore, the aim of this study was to evaluate the prevalence of Y. enterocolitica in cattle and to determine the antimicrobial susceptibility of the isolated strains. Results A total of 1020 samples were analyzed, including 660 rectal swabs collected from live cattle and 360 swabs from cold-stored beef carcasses. The results of this study indicate that Y. enterocolitica was isolated from three of the 15 examined cattle herds and the prevalence within these herds ranged from 0% to nearly 32%. Y. enterocolitica was isolated from 14.7% of the examined heifers, 7.4% of calves and 5.5% of adult cows. More than 65% of the strains were isolated from cold enrichment. The strains isolated from live cattle tested positive for the ystB gene, while ail and ystA genes were not found. Most of the isolated strains belonged to bioserotype 1A/NT. The majority of the isolated strains were resistant to ampicillin, cefalexin and amoxicillin with clavulanic acid, however these are expected phenotypes for Y. enterocolitica. Conclusions The results of this study indicate that Y. enterocolitica is present in cattle herds in Poland. The strains isolated from live cattle were ystB-positive, most of them belonged to bioserotype 1A/NT. The prevalence of Y. enterocolitica strains was generally low in cold-stored beef carcasses

    Bioserotypes, Virulence Markers, and Antimicrobial Susceptibility of Yersinia enterocolitica Strains Isolated from Free-Living Birds

    No full text
    The risk of meat contamination with Yersinia enterocolitica poses a threat to consumers and persons who come into contact with bird carcasses. The occurrence of Y. enterocolitica in the vast majority of migratory game species, the capercaillie, and the black grouse has never been studied in Poland, Europe, or in the world. The material for the study consisted of cloacal swabs obtained from 143 Eurasian coots, 50 mallards, 30 pochards, 27 greylag geese, 22 white-fronted geese, 22 bean geese, 20 green-winged teals, and 10 tufted ducks, as well as fecal swabs obtained from 105 capercaillie and 18 black grouse. Bacteriological examinations of 894 samples taken from 447 birds led to the isolation of 20 strains with the biochemical features characteristic of the genus Yersinia. All 20 strains were molecularly examined, and the genes characteristic of Y. enterocolitica were detected in 8 strains. The isolated strains harbored amplicons whose size corresponded to ystB gene fragments. Four strains belonged to bioserotype 1A/NI, one strain was identified as bioserotype 1B/O:9, and one as 1A/O:9. The prevalence of Y. enterocolitica was determined at 1.4% in green-winged teals, at 5.0% in Eurasian coots, and at 4.8% in capercaillie. All strains were resistant to amoxicillin with clavulanic acid, ampicillin, and cefalexin. The strains isolated from migratory birds were also resistant to kanamycin and streptomycin, and they were characterized by resistance or intermediate resistance to cefotaxime, ceftazidime, chloramphenicol, gentamycin, and tetracycline, to which the strains isolated from the capercaillie were susceptible. Yersinia enterocolitica was not detected in the remaining bird species. The presence of Y. enterocolitica in green-winged teals, Eurasian coots, and capercaillie indicates that these birds could be carriers, potential reservoirs, and sources of infection for humans. They can also be regarded as reliable bioindicators of Y. enterocolitica in their respective habitats

    The Most Important Virulence Markers of Yersinia enterocolitica and Their Role during Infection

    No full text
    Yersinia enterocolitica is the causative agent of yersiniosis, a zoonotic disease of growing epidemiological importance with significant consequences for public health. This pathogenic species has been intensively studied for many years. Six biotypes (1A, 1B, 2, 3, 4, 5) and more than 70 serotypes of Y. enterocolitica have been identified to date. The biotypes of Y. enterocolitica are divided according to their pathogenic properties: the non-pathogenic biotype 1A, weakly pathogenic biotypes 2–5, and the highly pathogenic biotype 1B. Due to the complex pathogenesis of yersiniosis, further research is needed to expand our knowledge of the molecular mechanisms involved in the infection process and the clinical course of the disease. Many factors, both plasmid and chromosomal, significantly influence these processes. The aim of this study was to present the most important virulence markers of Y. enterocolitica and their role during infection

    A study of single nucleotide polymorphism in the <i>ystB</i> gene of <i>Yersinia enterocolitica</i> strains isolated from various wild animal species

    No full text
    Introduction and objective Y. enterocolitica is the causative agent of yersiniosis. The objective of the article was a study of single nucleotide polymorphism in the ystB gene of Y. enterocolitica strains isolated from various wild animal species. Material and Methods High-resolution melting (HRM) analysis was applied to identify single nucleotide polymorphism (SNP) of ystB gene fragments of 88 Y. enterocolitica biotype 1A strains isolated from wild boar, roe deer, red deer and wild ducks. Results HRM analysis revealed 14 different melting profiles – 4 of them were defined as regular genotypes (G1, G2, G3, G4), whereas 10 as variations. 24 of the examined Y. enterocolitica strains were classified as G1, 18 strains as a G2, 21 strains as a G3, and 15 strains as a G4. Nucleotide sequences classified as G1 revealed 100% similarity with the Y. enterocolitica D88145.1 sequence (NCBI). Analysis of G2 revealed one point mutation – transition T111A. One mutation was also found in G3, but SNP was placed in a different gene region – transition G193A. Two SNPs – transitions G92C and T111A – were identified in G4. Direct sequencing of 10 variations revealed 5 new variants of the ystB nucleotide sequence: V1 – transition G129A (3 strains); V2 – transitions T111A and G193A (2 strains); V3 – transitions C118T and G193A (1 strain); V4 – transitions C141A and G193A (2 strains); and V5 characterized by 19 SNPs: G83A, T93A, A109G, G114T, C116T, A123G, T134C, T142G, T144C, A150C, G162A, T165G, T170G, T174A, T177G, G178A, A179G, A184G and G193A (2 strains). The predominant genotype in isolates from wild ducks was G1; in red deer G2; in wild boar G3; in roe deer G1 and G4. Conclusions The proposed HRM method could be used to analyze Y. enterocolitica biotype 1A strains isolated from different sources, including human
    corecore