574 research outputs found

    Auditory effects of autologous fat graft for TORP stabilization in the middle ear: a cadaveric study.

    Get PDF
    BACKGROUND: Total ossicular replacement prostheses (TORP) are often used to re-establish ossicular coupling of sound in an ear lacking a stapes supra-structure. The use of TORPs, however, is associated with a 2/3 five year failure rate due to their anatomic instability over time in the middle ear. The use of autologous fat to try and stabilize TORPs may improve long-term results with this challenging ossicular reconstruction technique. METHODS: A cadaveric temporal bone model was developed and laser Doppler vibrometry was used to measure and record round window membrane vibration in response to sound stimulation under the following conditions: normal middle ear, middle ear filled with fat, normal middle ear with TORP prosthesis, TORP prosthesis with fat around its distal end and TORP prosthesis with fat filling the middle ear. Fourteen temporal bones were used. RESULTS: There was a significant decrease in round window membrane velocity after filling the middle ear with fat in both the normal middle ear (- 8.6 dB; p  0.05). CONCLUSIONS: Autologous fat around the distal end of a TORP prosthesis may not be associated with any additional hearing loss, as demonstrated in this cadaveric model. The additional hearing loss potentially caused by using fat to completely surround the prosthesis and fill the middle ear is probably not clinically acceptable at this time, especially given the unknown way in which the fat will atrophy over time in this context

    Simulation of magnetic active polymers for versatile microfluidic devices

    Full text link
    We propose to use a compound of magnetic nanoparticles (20-100 nm) embedded in a flexible polymer (Polydimethylsiloxane PDMS) to filter circulating tumor cells (CTCs). The analysis of CTCs is an emerging tool for cancer biology research and clinical cancer management including the detection, diagnosis and monitoring of cancer. The combination of experiments and simulations lead to a versatile microfluidic lab-on-chip device. Simulations are essential to understand the influence of the embedded nanoparticles in the elastic PDMS when applying a magnetic gradient field. It combines finite element calculations of the polymer, magnetic simulations of the embedded nanoparticles and the fluid dynamic calculations of blood plasma and blood cells. With the use of magnetic active polymers a wide range of tunable microfluidic structures can be created. The method can help to increase the yield of needed isolated CTCs
    • …
    corecore