286 research outputs found

    Iterative maximum-likelihood reconstruction in quantum homodyne tomography

    Full text link
    I propose an iterative expectation maximization algorithm for reconstructing a quantum optical ensemble from a set of balanced homodyne measurements performed on an optical state. The algorithm applies directly to the acquired data, bypassing the intermediate step of calculating marginal distributions. The advantages of the new method are made manifest by comparing it with the traditional inverse Radon transformation technique

    Maximum likelihood estimation of photon number distribution from homodyne statistics

    Get PDF
    We present a method for reconstructing the photon number distribution from the homodyne statistics based on maximization of the likelihood function derived from the exact statistical description of a homodyne experiment. This method incorporates in a natural way the physical constraints on the reconstructed quantities, and the compensation for the nonunit detection efficiency.Comment: 3 pages REVTeX. Final version, to appear in Phys. Rev. A as a Brief Repor

    Experimental demonstration of entanglement-enhanced classical communication over a quantum channel with correlated noise

    Full text link
    We present an experiment demonstrating entanglement-enhanced classical communication capacity of a quantum channel with correlated noise. The channel is modelled by a fiber optic link exhibiting random birefringence that fluctuates on a time scale much longer than the temporal separation between consecutive uses of the channel. In this setting, introducing entanglement between two photons travelling down the fiber allows one to encode reliably up to one bit of information into their joint polarization degree of freedom. When no quantum correlations between two separate uses of the channel are allowed, this capacity is reduced by a factor of more than three. We demonstrated this effect using a fiber-coupled source of entagled photon pairs based on spontaneous parametric down-conversion, and a linear-optics Bell state measurement.Comment: 4 pages, 2 figures, REVTe

    Subwavelength fractional Talbot effect in layered heterostructures of composite metamaterials

    Get PDF
    We demonstrate that under certain conditions, fractional Talbot revivals can occur in heterostructures of composite metamaterials, such as multilayer positive and negative index media, metallodielectric stacks, and one-dimensional dielectric photonic crystals. Most importantly, without using the paraxial approximation we obtain Talbot images for the feature sizes of transverse patterns smaller than the illumination wavelength. A general expression for the Talbot distance in such structures is derived, and the conditions favorable for observing Talbot effects in layered heterostructures is discussed.Comment: To be published in Phys. Rev.

    The accuracy of a 2D and 3D dendritic tip scaling parameter in predicting the columnar to equiaxed transition (CET)

    Get PDF
    The dendrite tip kinetics model accuracy relies on the reliability of the stability constant used, which is usually experimentally determined for 3D situations and applied to 2D models. The paper reports authors` attempts to cure the situation by deriving 2D dendritic tip scaling parameter for aluminium-based alloy: Al-4wt%Cu. The obtained parameter is then incorporated into the KGT dendritic growth model in order to compare it with the original 3D KGT counterpart and to derive two-dimensional and three-dimensional versions of the modified Hunt’s analytical model for the columnar-to-equiaxed transition (CET). The conclusions drawn from the above analysis are further confirmed through numerical calculations of the two cases of Al-4wt%Cu metallic alloy solidification using the front tracking technique. Results, including the porous zone-under-cooled liquid front position, the calculated solutal under-cooling and a new predictor of the relative tendency to form an equiaxed zone, are shown, compared and discussed two numerical cases. The necessity to calculate sufficiently precise values of the tip scaling parameter in 2D and 3D is stressed

    The Role of the Dendritic Growth Models Dimensionality in Predicting the Columnar to Equiaxed Transition (CET)

    Get PDF
    The dendrite tip kinetics model accuracy relies on the reliability of the stability constant used, which is usually experimentally determined for 3D situations and applied to 2D models. The paper reports authors` attempts to cure the situation by deriving 2D dendritic tip scaling parameter for aluminium-based alloy: Al-4wt%Cu. The obtained parameter is then incorporated into the KGT dendritic growth model in order to compare it with the original 3D KGT counterpart and to derive two-dimensional and three-dimensional versions of the modified Hunt’s analytical model for the columnar-to-equiaxed transition (CET). The conclusions drawn from the above analysis are further confirmed through numerical calculations of the two cases of Al-4wt%Cu metallic alloy solidification using the front tracking technique. Results, including the porous zone-under-cooled liquid front position, the calculated solutal under-cooling, the average temperature gradient at a front of the dendrite tip envelope and a new predictor of the relative tendency to form an equiaxed zone, are shown, compared and discussed for two numerical cases. The necessity to calculate sufficiently precise values of the tip scaling parameter in 2D and 3D is stressed

    Exploiting entanglement in communication channels with correlated noise

    Full text link
    We develop a model for a noisy communication channel in which the noise affecting consecutive transmissions is correlated. This model is motivated by fluctuating birefringence of fiber optic links. We analyze the role of entanglement of the input states in optimizing the classical capacity of such a channel. Assuming a general form of an ensemble for two consecutive transmissions, we derive tight bounds on the classical channel capacity depending on whether the input states used for communication are separable or entangled across different temporal slots. This result demonstrates that by an appropriate choice, the channel capacity may be notably enhanced by exploiting entanglement.Comment: 9 pages, 5 figure

    Quantum homodyne tomography with a priori constraints

    Full text link
    I present a novel algorithm for reconstructing the Wigner function from homodyne statistics. The proposed method, based on maximum-likelihood estimation, is capable of compensating for detection losses in a numerically stable way.Comment: 4 pages, REVTeX, 2 figure
    • …
    corecore