213 research outputs found
Delayed stability switches in singularly perturbed predator-prey models
In this paper we provide an elementary proof of the existence of canard
solutions for a class of singularly perturbed predator-prey planar systems in
which there occurs a transcritical bifurcation of quasi steady states. The
proof uses a one-dimensional theory of canard solutions developed by V. F.
Butuzov, N. N. Nefedov and K. R. Schneider, and an appropriate monotonicity
assumption on the vector field to extend it to the two-dimensional case. The
result is applied to identify all possible predator-prey models with quadratic
vector fields allowing for the existence of canard solutions
Chapman-Enskog asymptotic procedure in structured population dynamics
Complexity of many biological models often makes impossible their robust theoretical and numerical analysis and thus requires a systematical method of reducing the number of variables in the system in such a way that the dynamics
of the simplified model approximates the original way in a reasonable way. Such an aggregation of variables is often done by ad hoc methods. In turns out that in many biological systems the well-known Chapman-Enskog asymptotic procedure is well suited for aggregation which then can be viewed as passing from a microscopic (kinetic) to a macroscopic (hydrodynamic) description of the system. We demonstrate this approach by applying it to an age- and space-structured population model
Linear chaos for the Quick-Thinking-Driver model
The final publication is available at Springer via http://dx.doi.org/10.1007/s00233-015-9704-6In recent years, the topic of car-following has experimented an increased importance in traffic engineering and safety research. This has become a very interesting topic because of the development of driverless cars (Google driverless cars, http://en.wikipedia.org/wiki/Google_driverless_car).Driving models which describe the interaction between adjacent vehicles in the same lane have a big interest in simulation modeling, such as the Quick-Thinking-Driver model. A non-linear version of it can be given using the logistic map, and then chaos appears. We show that an infinite-dimensional version of the linear model presents a chaotic behaviour using the same approach as for studying chaos of death models of cell growth.The authors were supported by a grant from the FPU program of MEC and MEC Project MTM2013-47093-P.Conejero, JA.; Murillo Arcila, M.; Seoane-SepĂşlveda, JB. (2016). Linear chaos for the Quick-Thinking-Driver model. Semigroup Forum. 92(2):486-493. https://doi.org/10.1007/s00233-015-9704-6S486493922Aroza, J., Peris, A.: Chaotic behaviour of birth-and-death models with proliferation. J. Differ. Equ. Appl. 18(4), 647–655 (2012)Banasiak, J., Lachowicz, M.: Chaos for a class of linear kinetic models. C. R. Acad. Sci. Paris SĂ©rie II 329, 439–444 (2001)Banasiak, J., Lachowicz, M.: Topological chaos for birth-and-death-type models with proliferation. Math. Models Methods Appl. Sci. 12(6), 755–775 (2002)Banasiak, J., Lachowicz, M., MoszyĹ„ski, M.: Topological chaos: when topology meets medicine. Appl. Math. Lett. 16(3), 303–308 (2003)Banasiak, J., MoszyĹ„ski, M.: A generalization of Desch–Schappacher–Webb criteria for chaos. Discret. Contin. Dyn. Syst. 12(5), 959–972 (2005)Banasiak, J., MoszyĹ„ski, M.: Dynamics of birth-and-death processes with proliferation–stability and chaos. Discret. Contin. Dyn. Syst. 29(1), 67–79 (2011)Banks, J., Brooks, J., Cairns, G., Davis, G., Stacey, P.: On Devaney’s definition of chaos. Am. Math. Mon. 99(4), 332–334 (1992)Barrachina, X., Conejero, J.A.: Devaney chaos and distributional chaos in the solution of certain partial differential equations. Abstr. Appl. Anal. 457,019, 11 (2012)BermĂşdez, T., Bonilla, A., MartĂnez-GimĂ©nez, F., Peris, A.: Li-Yorke and distributionally chaotic operators. J. Math. Anal. Appl. 373(1), 83–93 (2011)Brackstone, M., McDonald, M.: Car-following: a historical review. Transp. Res. Part F 2(4), 181–196 (1999)BrzeĹşniak, Z., Dawidowicz, A.L.: On periodic solutions to the von Foerster–Lasota equation. Semigroup Forum 78, 118–137 (2009)Chandler, R.E., Herman, R., Montroll, E.W.: Traffic dynamics: studies in car following. Op. Res. 6, 165–184 (1958)Chung, C.C., Gartner, N.: Acceleration noise as a measure of effectiveness in the operation of traffic control systems. Operations Research Center. Massachusetts Institute of Technology. Cambridge (1973)CNN (2014) Driverless car tech gets serious at CES. http://edition.cnn.com/2014/01/09/tech/innovation/self-driving-cars-ces/ . Accessed 7 Apr 2014Conejero, J.A., Rodenas, F., Trujillo, M.: Chaos for the hyperbolic bioheat equation. Discret. Contin. Dyn. Syst. 35(2), 653–668 (2015)DARPA Grand Challenge. http://en.wikipedia.org/wiki/2005_DARPA_Grand_Challenge#2005_Grand_Challengede Laubenfels, R., Emamirad, H., Protopopescu, V.: Linear chaos and approximation. J. Approx. Theory 105(1), 176–187 (2000)Desch, W., Schappacher, W., Webb, G.F.: Hypercyclic and chaotic semigroups of linear operators. Ergod. Theory Dyn. Syst. 17(4), 793–819 (1997)El Mourchid, S.: The imaginary point spectrum and hypercyclicity. Semigroup Forum 73(2), 313–316 (2006)El Mourchid, S., Metafune, G., Rhandi, A., Voigt, J.: On the chaotic behaviour of size structured cell populations. J. Math. Anal. Appl. 339(2), 918–924 (2008)El Mourchid, S., Rhandi, A., Vogt, H., Voigt, J.: A sharp condition for the chaotic behaviour of a size structured cell population. Differ. Integral Equ. 22(7–8), 797–800 (2009)Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194. Springer, New York, 2000. With contributions by Brendle S., Campiti M., Hahn T., Metafune G., Nickel G., Pallara D., Perazzoli C., Rhandi A., Romanelli S., and Schnaubelt RGodefroy, G., Shapiro, J.H.: Operators with dense, invariant, cyclic vector manifolds. J. Funct. Anal. 98(2), 229–269 (1991)Greenshields, B.D.: The photographic method of studying traffic behavior. In: Proceedings of the 13th Annual Meeting of the Highway Research Board, pp. 382–399 (1934)Greenshields, B.D.: A study of traffic capacity. In: Proceedings of the 14th Annual Meeting of the Highway Research Board, pp. 448–477 (1935)Grosse-Erdmann, K.G., Peris Manguillot, A.: Linear Chaos. Universitext. Springer, London (2011)Herman, R., Montroll, E.W., Potts, R.B., Rothery, R.W.: Traffic dynamics: analysis of stability in car following. Op. Res. 7, 86–106 (1959)Helly, W.: Simulation of Bottleneckes in Single-Lane Traffic Flow. Research Laboratories, General Motors. Elsevier, New York (1953)Li, T.: Nonlinear dynamics of traffic jams. Phys. D 207(1–2), 41–51 (2005)Lo, S.C., Cho, H.J.: Chaos and control of discrete dynamic traffic model. J. Franklin Inst. 342(7), 839–851 (2005)MartĂnez-GimĂ©nez, F., Oprocha, P., Peris, A.: Distributional chaos for backward shifts. J. Math. Anal. Appl. 351(2), 607–615 (2009)Pipes, L.A.: An operational analysis of traffic dynamics. J. Appl. Phys. 24, 274–281 (1953
Delayed stability switches in singularly perturbed predator–prey models
In this paper we provide an elementary proof of the existence of canard solutions for a class of singularly
perturbed planar systems in which there occurs a transcritical bifurcation of the quasi steady states. The
proof uses the one-dimensional result proved by V. F. Butuzov, N. N. Nefedov and K. R. Schneider, and
an appropriate monotonicity assumption on the vector eld. The result is applied to identify all possible
predator-prey models with quadratic vector elds allowing for the existence of canard solutions.http://www.elsevier.com/locate/nonrwa2018-06-30hb2017Mathematics and Applied Mathematic
Chaotic asymptotic behaviour of the solutions of the Lighthill Whitham Richards equation
[EN] The phenomenon of chaos has been exhibited in mathematical nonlinear models that describe traffic flows, see, for instance (Li and Gao in Modern Phys Lett B 18(26-27):1395-1402, 2004; Li in Phys. D Nonlinear Phenom 207(1-2):41-51, 2005). At microscopic level, Devaney chaos and distributional chaos have been exhibited for some car-following models, such as the quick-thinking-driver model and the forward and backward control model (Barrachina et al. in 2015; Conejero et al. in Semigroup Forum, 2015). We present here the existence of chaos for the macroscopic model given by the Lighthill Whitham Richards equation.The authors are supported by MEC Project MTM2013-47093-P. The second and third authors are supported by GVA, Project PROMETEOII/2013/013Conejero, JA.; MartĂnez JimĂ©nez, F.; Peris Manguillot, A.; RĂłdenas Escribá, FDA. (2016). Chaotic asymptotic behaviour of the solutions of the Lighthill Whitham Richards equation. Nonlinear Dynamics. 84(1):127-133. https://doi.org/10.1007/s11071-015-2245-4S127133841Albanese, A.A., Barrachina, X., Mangino, E.M., Peris, A.: Distributional chaos for strongly continuous semigroups of operators. Commun. Pure Appl. Anal. 12(5), 2069–2082 (2013)Aroza, J., Peris, A.: Chaotic behaviour of birth-and-death models with proliferation. J. Differ. Equ. Appl. 18(4), 647–655 (2012)Banasiak, J., Lachowicz, M.: Chaos for a class of linear kinetic models. C. R. Acad. Sci. Paris SĂ©r. II 329, 439–444 (2001)Banasiak, J., Lachowicz, M.: Topological chaos for birth-and-death-type models with proliferation. Math. Models Methods Appl. Sci. 12(6), 755–775 (2002)Banasiak, J., MoszyĹ„ski, M.: A generalization of Desch–Schappacher–Webb criteria for chaos. Discrete Contin. Dyn. Syst. 12(5), 959–972 (2005)Banasiak, J., MoszyĹ„ski, M.: Dynamics of birth-and-death processes with proliferation—stability and chaos. Discrete Contin. Dyn. Syst. 29(1), 67–79 (2011)Barrachina, X., Conejero, J.A.: Devaney chaos and distributional chaos in the solution of certain partial differential equations. Abstr. Appl. Anal. Art. ID 457019, 11 (2012)Barrachina, X., Conejero, J.A., Murillo-Arcila, M., Seoane-SepĂşlveda, J.B.: Distributional chaos for the forward and backward control traffic model (2015, preprint)Bayart, F., Matheron, É.: Dynamics of Linear Operators, Cambridge Tracts in Mathematics, vol. 179. Cambridge University Press, Cambridge (2009)Bayart, F., Matheron, É.: Mixing operators and small subsets of the circle. J Reine Angew. Math. (2015, to appear)BermĂşdez, T., Bonilla, A., Conejero, J.A., Peris, A.: Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces. Stud. Math. 170(1), 57–75 (2005)BermĂşdez, T., Bonilla, A., MartĂnez-GimĂ©nez, F., Peris, A.: Li-Yorke and distributionally chaotic operators. J. Math. Anal. Appl. 373(1), 83–93 (2011)Bernardes Jr, N.C., Bonilla, A., MĂĽller, V., Peris, A.: Distributional chaos for linear operators. J. Funct. Anal. 265(9), 2143–2163 (2013)Brackstone, M., McDonald, M.: Car-following: a historical review. Transp. Res. Part F Traffic Psychol. Behav. 2(4), 181–196 (1999)Conejero, J.A., Lizama, C., Rodenas, F.: Chaotic behaviour of the solutions of the Moore–Gibson–Thompson equation. Appl. Math. Inf. Sci. 9(5), 1–6 (2015)Conejero, J.A., Mangino, E.M.: Hypercyclic semigroups generated by Ornstein-Uhlenbeck operators. Mediterr. J. Math. 7(1), 101–109 (2010)Conejero, J.A., MĂĽller, V., Peris, A.: Hypercyclic behaviour of operators in a hypercyclic C 0 -semigroup. J. Funct. Anal. 244, 342–348 (2007)Conejero, J.A., Murillo-Arcila, M., Seoane-SepĂşlveda, J.B.: Linear chaos for the quick-thinking-driver model. Semigroup Forum (2015). doi: 10.1007/s00233-015-9704-6Conejero, J.A., Peris, A., Trujillo, M.: Chaotic asymptotic behavior of the hyperbolic heat transfer equation solutions. Int. J. Bifur. Chaos Appl. Sci. Eng. 20(9), 2943–2947 (2010)Conejero, J.A., Rodenas, F., Trujillo, M.: Chaos for the hyperbolic bioheat equation. Discrete Contin. Dyn. Syst. 35(2), 653–668 (2015)Desch, W., Schappacher, W., Webb, G.F.: Hypercyclic and chaotic semigroups of linear operators. Ergod. Theory Dyn. Syst. 17(4), 793–819 (1997)Engel, K.-J., Nagel, R.: One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, vol. 194. Springer, New York (2000). With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. SchnaubeltGrosse-Erdmann, K.-G., Peris Manguillot, A.: Linear Chaos. Universitext. Springer, London (2011)Herzog, G.: On a universality of the heat equation. Math. Nachr. 188, 169–171 (1997)Li, K., Gao, Z.: Nonlinear dynamics analysis of traffic time series. Modern Phys. Lett. B 18(26–27), 1395–1402 (2004)Li, T.: Nonlinear dynamics of traffic jams. Phys. D Nonlinear Phenom. 207(1–2), 41–51 (2005)Lustri, C.: Continuum Modelling of Traffic Flow. Special Topic Report. Oxford University, Oxford (2010)Lighthill, M.J., Whitham, G.B.: On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. Ser. A. 229, 317–345 (1955)Maerivoet, S., De Moor, B.: Cellular automata models of road traffic. Phys. Rep. 419(1), 1–64 (2005)Mangino, E.M., Peris, A.: Frequently hypercyclic semigroups. Stud. Math. 202(3), 227–242 (2011)Murillo-Arcila, M., Peris, A.: Strong mixing measures for linear operators and frequent hypercyclicity. J. Math. Anal. Appl. 398, 462–465 (2013)Murillo-Arcila, M., Peris, A.: Strong mixing measures for C 0 -semigroups. Rev. R. Acad. Cienc. Exactas FĂs. Nat. Ser. A Math. RACSAM 109(1), 101–115 (2015)Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44. Springer, New York (1983)Protopopescu, V., Azmy, Y.Y.: Topological chaos for a class of linear models. Math. Models Methods Appl. Sci. 2(1), 79–90 (1992)Richards, P.I.: Shock waves on the highway. Oper. Res. 4, 42–51 (1956
Integral representation of the linear Boltzmann operator for granular gas dynamics with applications
We investigate the properties of the collision operator associated to the
linear Boltzmann equation for dissipative hard-spheres arising in granular gas
dynamics. We establish that, as in the case of non-dissipative interactions,
the gain collision operator is an integral operator whose kernel is made
explicit. One deduces from this result a complete picture of the spectrum of
the collision operator in an Hilbert space setting, generalizing results from
T. Carleman to granular gases. In the same way, we obtain from this integral
representation of the gain operator that the semigroup in L^1(\R \times \R,\d
\x \otimes \d\v) associated to the linear Boltzmann equation for dissipative
hard spheres is honest generalizing known results from the first author.Comment: 19 pages, to appear in Journal of Statistical Physic
Elongation of wood fibers combines features of diffuse and tip growth
Xylem fibers are highly elongated cells that are key constituents of wood, play major physiological roles in plants, comprise an important terrestrial carbon reservoir, and thus have enormous ecological and economic importance. As they develop, from fusiform initials, their bodies remain the same length while their tips elongate and intrude into intercellular spaces.To elucidate mechanisms of tip elongation, we studied the cell wall along the length of isolated, elongating aspen xylem fibers and used computer simulations to predict the forces driving the intercellular space formation required for their growth.We found pectin matrix epitopes (JIM5, LM7) concentrated at the tips where cellulose microfibrils have transverse orientation, and xyloglucan epitopes (CCRC-M89, CCRC-M58) in fiber bodies where microfibrils are disordered. These features are accompanied by changes in cell wall thickness, indicating that while the cell wall elongates strictly at the tips, it is deposited all over fibers. Computer modeling revealed that the intercellular space formation needed for intrusive growth may only require targeted release of cell adhesion, which allows turgor pressure in neighboring fiber cells to 'round' the cells creating spaces.These characteristics show that xylem fibers' elongation involves a distinct mechanism that combines features of both diffuse and tip growth
- …