8 research outputs found

    Shear-induced variability in the United States pharmacopeia apparatus 2: Modifications to the existing system

    No full text
    The hydrodynamics within the United States Pharmacopeia Apparatus 2 have been shown to be highly non-uniform with a potential to yield substantial variability in dissolution rate measurements. Through the use of readily available engineering tools, several geometric modifications to the device were evaluated in this study. Specifically, we examined the influence of impeller clearance, agitator type (radial and axial), and vessel geometry (PEAK vessel) on the fluid flow properties and their relation to measured dissolution rates. Increasing the impeller clearance was observed to exacerbate the heterogeneity in shear and would likely result in greater variability in dissolution measurements. Altering the impeller type was shown to yield changes in the hydrodynamic behavior; however, the overall properties and problems with the test remain the same. Use of the PEAK vessel was observed to reduce shear heterogeneity in the regions where tablets are most likely to visit during testing; however, higher shear rates may result in the inability to discriminate between true differences in dissolution rates

    Use of hydrophilic natural gums in formulation of sustained-release matrix tablets of tramadol hydrochloride

    No full text
    The objective of this work was to develop matrix sustained-release tablets of highly water-soluble tramadol HCl using natural gums (xanthan [X gum] and guar [G gum]) as cost-effective, nontoxic, easily available, and suitable hydrophilic matrix systems compared with the extensively investigated hydrophilic matrices (ie, hydroxypropyl methylcellulose [HPMC]/carboxymethyl cellulose [CMC] with respect to in vitro drug release rate) and hydration rate of the polymers. Matrix tablets of tramadol (dose 100 mg) were produced by direct compression method. Different ratios, of 100∶0, 80∶20, 60∶40, 20∶80, 0∶100 of G gum (or X):HPMC, X gum:G gum, and triple mixture of these polymers (G gum, X gum, HPMC) were applied. After evaluation of physical characteristics of tablets, the dissolution test was, performed in the phosphate buffer media (pH 7.4) up to 8 hours. Tablets with only X had the highest mean dissolution time (MDT), the least dissolution efficiency (DE8%), and released the drug following a zero-order model via swelling, diffusion, and erosion mechanisms. Guar gum alone could not efficiently control the drug release, while X and all combinations of natural gums with HPMC could retard tramadol HCl release. However, according to the similarity factor (f2), pure HPMC and H8G2 were the most similar formulations to Topalgic-LP as the reference standard
    corecore