14 research outputs found

    Validation of thermal-mechanical modeling of stainless steel forgings

    Get PDF
    A constitutive model for recrystallization has been developed within the framework of an existing dislocation-based rate and temperature-dependent plasticity model. The theory has been implemented and tested in a finite element code. Material parameters were fit to data from monotonic compression tests on 304L steel for a wide range of temperatures and strain rates. The model is then validated by using the same parameter set in predictive thermal-mechanical simulations of experiments in which wedge forgings were produced at elevated temperatures. Model predictions of the final yield strengths compare well to the experimental results

    Formulation and validation of a thermomechanical viscoplastic constitutive model for amorphous glassy polymer

    No full text
    International audiencePolymers exhibit a rich variety of mechanical behaviour originating from their particular microstructure. To capture such intricate structure properties, a number of polymer constitutive models have been proposed and implemented into finite element codes in an effort to solve complex engineering problems. However, developing improved constitutive models for polymers that are physically-based has proven to be a challenging area with important implications for the design of polymeric structural components

    Modeling the Dynamic Failure of Railroad Tank Cars Using a Physically Motivated Internal State Variable Plasticity/Damage Nonlocal Model

    No full text
    We used a physically motivated internal state variable plasticity/damage model containing a mathematical length scale to idealize the material response in finite element simulations of a large-scale boundary value problem. The problem consists of a moving striker colliding against a stationary hazmat tank car. The motivations are (1) to reproduce with high fidelity finite deformation and temperature histories, damage, and high rate phenomena that may arise during the impact accident and (2) to address the material postbifurcation regime pathological mesh size issues. We introduce the mathematical length scale in the model by adopting a nonlocal evolution equation for the damage, as suggested by Pijaudier-Cabot and Bazant in the context of concrete. We implement this evolution equation into existing finite element subroutines of the plasticity/failure model. The results of the simulations, carried out with the aid of Abaqus/Explicit finite element code, show that the material model, accounting for temperature histories and nonlocal damage effects, satisfactorily predicts the damage progression during the tank car impact accident and significantly reduces the pathological mesh size effects

    A general inelastic internal state variable model for amorphous glassy polymers

    No full text
    International audienceThis paper presents the formulation of a constitutive model for amorphous thermoplastics using a thermodynamic approach with physically motivated internal state variables. The formulation follows current internal state variable methodologies used for metals and departs from the spring-dashpot representation generally used to characterize the mechanical behavior of polymers like those used by Ames et al. in Int J Plast, 25, 1495–1539 (2009) and Anand and Gurtin in Int J Solids Struct, 40, 1465–1487 (2003), Anand and Ames in Int J Plast, 22, 1123–1170 (2006), Anand et al. in Int J Plast, 25, 1474–1494 (2009). The selection of internal state variables was guided by a hierarchical multiscale modeling approach that bridged deformation mechanisms from the molecular dynamics scale (coarse grain model) to the continuum level. The model equations were developed within a large deformation kinematics and thermodynamics framework where the hardening behavior at large strains was captured using a kinematic-type hardening variable with two possible evolution laws: a current method based on hyperelasticity theory and an alternate method whereby kinematic hardening depends on chain stretching and material plastic flow. The three-dimensional equations were then reduced to the one-dimensional case to quantify the material parameters from monotonic compression test data at different applied strain rates. To illustrate the generalized nature of the constitutive model, material parameters were determined for four different amorphous polymers: polycarbonate, poly(methylmethacrylate), polystyrene, and poly(2,6-dimethyl-1,4-phenylene oxide). This model captures the complex character of the stress–strain behavior of these amorphous polymers for a range of strain rates
    corecore