7 research outputs found

    Switched Tank Converter: Quasi-Resonant Regulation for Soft Start and Mismatch Mitigation Technique

    No full text
    In recent years, there has been a significant increase in the power consumption of data centers. As a result, server rack architecture has shifted from using 12 V to higher voltage levels of 48–60 V. The conventional power delivery system in use involves two stages of dc–dc conversion, utilizing an unregulated first-stage converter followed by a regulated converter. Among the first-stage converter topologies, the 4-to-1 switched tank converter (STC) is highly employed due to its high efficiency and power density. However, the STC has the drawback of generating a large inrush current during the startup phase. To address this issue, typically an auxiliary element such as a buck converter, a hot-swap controller, or an eFuse is employed. Additionally, achieving the zero-current switching condition in both resonant tanks is challenging when a mismatch in the resonant frequencies is considered. This article proposes a novel control technique to mitigate the large inrush that does not involve the use of any additional element, boosting the power density. It also presents a strategy to minimize the mismatch in the resonant frequencies in an STC. The experimental results obtained from a 600-W prototype validate the effectiveness of these approaches

    Quasi-regulation and mismatch mitigation technique for switched tank converters

    No full text
    Data center power consumption has been increasing remarkably in the last decades, mainly due to the massive adoption of cloud computing. Due to the vast amount of power consumed, server rack architecture has switched from 12 V to (48 V – 60 V). The commonly used power delivery system employs two stages of DC-DC conversion, cascading an unregulated first-stage converter and a regulated one. The 4-to-1 switched tank converter (STC) is one of the main topologies used as a first stage thanks to its very high efficiency and power density. However, a limitation of the STC is its large inrush current during the startup phase. To avoid this, usually the converter is preceded by a DC-DC converter, a hot-swap controller or an eFuse. Moreover, ensuring the zero current switching condition in both resonant tanks is not straightforward in presence of a mismatch between the resonant frequencies. In this paper, a novel control technique that avoids a large inrush current at startup without the usage of an auxiliary converter and a strategy to minimize the mismatch in the resonant frequencies are proposed for the STC. Experimental results for a 600 W prototype show the validity of these approaches

    Strategic R&D Programme on Technologies for Future Experiments - Annual Report 2021

    No full text
    This report summarises the activities and main achievements of the CERN strategic R&D programme on technologies for future experiments during the year 2021

    Strategic R&D Programme on Technologies for Future Experiments - Annual Report 2020

    No full text
    This report summarises the activities and achievements of the strategic R&D programme on technologies for future experiments in the year 2020

    Annual Report 2022

    No full text
    This report summarises the activities and main achievements of the CERN strategic R&D programme on technologies for future experiments during the year 202

    Extension of the R&D Programme on Technologies for Future Experiments

    No full text
    we have conceived an extension of the R&D programme covering the period 2024 to 2028, i.e. again a 5-year period, however with 2024 as overlap year. This step was encouraged by the success of the current programme but also by the Europe-wide efforts to launch new Detector R&D collaborations in the framework of the ECFA Detector R&D Roadmap. We propose to continue our R&D programme with the main activities in essentially the same areas. All activities are fully aligned with the ECFA Roadmap and in most cases will be carried out under the umbrella of one of the new DRD collaborations. The program is a mix of natural continuations of the current activities and a couple of very innovative new developments, such as a radiation hard embedded FPGA implemented in an ASIC based on System-on-Chip technology. A special and urgent topic is the fabrication of Al-reinforced super-conducting cables. Such cables are a core ingredient of any new superconducting magnet such as BabyIAXO, PANDA, EIC, ALICE-3 etc. Production volumes are small and demands come in irregular intervals. Industry (world-wide) is no longer able and willing to fabricate such cables. The most effective approach (technically and financially) may be to re-invent the process at CERN, together with interested partners, and offer this service to the community

    Annual Report 2023 and Phase-I Closeout

    No full text
    This report summarises the activities of the CERN strategic R&D programme on technologies for future experiments during the year 2023, and highlights the achievements of the programme during its first phase 2020-2023
    corecore