743 research outputs found
Spin polarization versus lifetime effects at point contacts between superconducting niobium and normal metals
Point-contact Andreev reflection spectroscopy is used to measure the spin
polarization of metals but analysis of the spectra has encountered a number of
serious challenges, one of which is the difficulty to distinguish the effects
of spin polarization from those of the finite lifetime of Cooper pairs. We have
recently confirmed the polarization-lifetime ambiguity for Nb-Co and Nb-Cu
contacts and suggested to use Fermi surface mismatch, the normal reflection due
to the difference of Fermi wave vectors of the two electrodes, to solve this
dilemma. Here we present further experiments on contacts between
superconducting Nb and the ferromagnets Fe and Ni as well as the noble metals
Ag and Pt that support our previous results. Our data indicate that the Nb -
normal metal interfaces have a transparency of up to about 80 per cent and a
small, if not negligible, spin polarization.Comment: 7 pages, 2 figures, submitted to Proceedings of the 26th Conference
on Low Temperature Physic
Magnetic domain structure and dynamics in interacting ferromagnetic stacks with perpendicular anisotropy
The time and field dependence of the magnetic domain structure at
magnetization reversal were investigated by Kerr microscopy in interacting
ferromagnetic Co/Pt multilayers with perpendicular anisotropy. Large local
inhomogeneous magnetostatic fields favor mirroring domain structures and domain
decoration by rings of opposite magnetization. The long range nature of these
magnetostatic interactions gives rise to ultra-slow dynamics even in zero
applied field, i.e. it affects the long time domain stability. Due to this
additionnal interaction field, the magnetization reversal under short magnetic
field pulses differs markedly from the well-known slow dynamic behavior.
Namely, in high field, the magnetization of the coupled harder layer has been
observed to reverse more rapidly by domain wall motion than the softer layer
alone.Comment: 42 pages including 17 figures. submitted to JA
Dynamic binding of driven interfaces in coupled ultrathin ferromagnetic layers
We demonstrate experimentally dynamic interface binding in a system
consisting of two coupled ferromagnetic layers. While domain walls in each
layer have different velocity-field responses, for two broad ranges of the
driving field, H, walls in the two layers are bound and move at a common
velocity. The bound states have their own velocity-field response and arise
when the isolated wall velocities in each layer are close, a condition which
always occurs as H->0. Several features of the bound states are reproduced
using a one dimensional model, illustrating their general nature.Comment: 5 pages, 4 figures, to be published in Physical Review Letter
Coherent rho and J/psi photoproduction in ultraperipheral processes with electromagnetic dissociation of heavy ions at RHIC and LHC
We present predictions for the J/psi and rho meson production in the heavy
ion ultraperipheral collisions (UPC) for the current energy 2.76 TeV at the
LHC. Both total cross sections and cross sections with the neutron emission
from one or both nuclei are presented. We also analyse the RHIC rho meson
photoproduction data and emphasize importance of these data to test the current
model for nucleus break up in UPC.Comment: 16 pages, 7 figure
A light-fronts approach to electron-positron pair production in ultrarelativistic heavy-ion collisions
We perform a gauge-transformation on the time-dependent Dirac equation
describing the evolution of an electron in a heavy-ion collision to remove the
explicit dependence on the long-range part of the interaction. We solve, in an
ultra-relativistic limit, the gauged-transformed Dirac equation using
light-front variables and a light-fronts representation, obtaining
non-perturbative results for the free pair-creation amplitudes in the collider
frame. Our result reproduces the result of second-order perturbation theory in
the small charge limit while non-perturbative effects arise for realistic
charges of the ions.Comment: 39 pages, Revtex, 7 figures, submitted to PR
Mesoscopic Systems With Fixed Number of Electrons
In this paper, we study the physics of mesoscopic systems with
noninteracting, but fixed number of electrons. From a technical point of view,
this means a discussion of the differences between the canonical and the grand
canonical ensemble (fixed versus fluctuating number of particles). Such a
discussion is not trivial since the grand canonical ensemble is the most
convenient basis for the statistics of identical particles and one has to spend
labour in order to retrieve the canonical ensemble. Specifically, we are
considering ensembles of mesoscopic systems with disorder, either by atomic
defects or by fluctuations in their geometric definitions and we discuss
various forms of disorder averages.Comment: 34 pages, revtex, 1 (postscript) figur
Bound-free pair production in ultra-relativistic ion collisions at the LHC collider: Analytic approach to the total and differential cross sections
A theoretical investigation of the bound-free electron-positron pair
production in relativistic heavy ion collisions is presented. Special attention
is paid to the positrons emitted under large angles with respect to the beam
direction. The measurement of these positrons in coincidence with the
down--charged ions is in principle feasible by LHC experiments. In order to
provide reliable estimates for such measurements, we employ the equivalent
photon approximation together with the Sauter approach and derive simple
analytic expressions for the differential pair--production cross section, which
compare favorably to the results of available numerical calculations. Based on
the analytic expressions, detailed calculations are performed for collisions of
bare Pb ions, taking typical experimental conditions of the LHC
experiments into account. We find that the expected count rate strongly depends
on the experimental parameters and may be significantly enhanced by increasing
the positron-detector acceptance cone.Comment: 10 pages, 4 figure
Highly asymmetric magnetic domain wall propagation due to coupling to a periodic pinning potential
Magneto-optical microscopy and magnetometry have been used to study
19 magnetization reversal in an ultrathin magnetically soft [Pt/Co]2 ferromagnetic film
20 coupled to an array of magnetically harder [Co/Pt]4 nanodots via a predominantly
21 dipolar interaction across a 3 nm Pt spacer. This interaction generates a spatially
22 periodic pinning potential for domain walls propagating through the continuous
23 magnetic film. When reversing the applied field with respect to the static nanodot
24 array magnetization orientation, strong asymmetries in the wall velocity and switching
25 fields are observed. Asymmetric switching fields mean that the hysteresis of the film is
26 characterized by a large bias field of dipolar origin which is linked to the wall velocity
27 asymmetry. This latter asymmetry, though large at low fields, vanishes at high fields
28 where the domains become round and compact. A field-polarity-controlled transition
29 from dendritic to compact faceted domain structures is also seen at low field and a
30 model is proposed to interpret the transition
- …