743 research outputs found

    Spin polarization versus lifetime effects at point contacts between superconducting niobium and normal metals

    Full text link
    Point-contact Andreev reflection spectroscopy is used to measure the spin polarization of metals but analysis of the spectra has encountered a number of serious challenges, one of which is the difficulty to distinguish the effects of spin polarization from those of the finite lifetime of Cooper pairs. We have recently confirmed the polarization-lifetime ambiguity for Nb-Co and Nb-Cu contacts and suggested to use Fermi surface mismatch, the normal reflection due to the difference of Fermi wave vectors of the two electrodes, to solve this dilemma. Here we present further experiments on contacts between superconducting Nb and the ferromagnets Fe and Ni as well as the noble metals Ag and Pt that support our previous results. Our data indicate that the Nb - normal metal interfaces have a transparency of up to about 80 per cent and a small, if not negligible, spin polarization.Comment: 7 pages, 2 figures, submitted to Proceedings of the 26th Conference on Low Temperature Physic

    Magnetic domain structure and dynamics in interacting ferromagnetic stacks with perpendicular anisotropy

    Full text link
    The time and field dependence of the magnetic domain structure at magnetization reversal were investigated by Kerr microscopy in interacting ferromagnetic Co/Pt multilayers with perpendicular anisotropy. Large local inhomogeneous magnetostatic fields favor mirroring domain structures and domain decoration by rings of opposite magnetization. The long range nature of these magnetostatic interactions gives rise to ultra-slow dynamics even in zero applied field, i.e. it affects the long time domain stability. Due to this additionnal interaction field, the magnetization reversal under short magnetic field pulses differs markedly from the well-known slow dynamic behavior. Namely, in high field, the magnetization of the coupled harder layer has been observed to reverse more rapidly by domain wall motion than the softer layer alone.Comment: 42 pages including 17 figures. submitted to JA

    Dynamic binding of driven interfaces in coupled ultrathin ferromagnetic layers

    Full text link
    We demonstrate experimentally dynamic interface binding in a system consisting of two coupled ferromagnetic layers. While domain walls in each layer have different velocity-field responses, for two broad ranges of the driving field, H, walls in the two layers are bound and move at a common velocity. The bound states have their own velocity-field response and arise when the isolated wall velocities in each layer are close, a condition which always occurs as H->0. Several features of the bound states are reproduced using a one dimensional model, illustrating their general nature.Comment: 5 pages, 4 figures, to be published in Physical Review Letter

    Coherent rho and J/psi photoproduction in ultraperipheral processes with electromagnetic dissociation of heavy ions at RHIC and LHC

    Get PDF
    We present predictions for the J/psi and rho meson production in the heavy ion ultraperipheral collisions (UPC) for the current energy 2.76 TeV at the LHC. Both total cross sections and cross sections with the neutron emission from one or both nuclei are presented. We also analyse the RHIC rho meson photoproduction data and emphasize importance of these data to test the current model for nucleus break up in UPC.Comment: 16 pages, 7 figure

    A light-fronts approach to electron-positron pair production in ultrarelativistic heavy-ion collisions

    Get PDF
    We perform a gauge-transformation on the time-dependent Dirac equation describing the evolution of an electron in a heavy-ion collision to remove the explicit dependence on the long-range part of the interaction. We solve, in an ultra-relativistic limit, the gauged-transformed Dirac equation using light-front variables and a light-fronts representation, obtaining non-perturbative results for the free pair-creation amplitudes in the collider frame. Our result reproduces the result of second-order perturbation theory in the small charge limit while non-perturbative effects arise for realistic charges of the ions.Comment: 39 pages, Revtex, 7 figures, submitted to PR

    Mesoscopic Systems With Fixed Number of Electrons

    Full text link
    In this paper, we study the physics of mesoscopic systems with noninteracting, but fixed number of electrons. From a technical point of view, this means a discussion of the differences between the canonical and the grand canonical ensemble (fixed versus fluctuating number of particles). Such a discussion is not trivial since the grand canonical ensemble is the most convenient basis for the statistics of identical particles and one has to spend labour in order to retrieve the canonical ensemble. Specifically, we are considering ensembles of mesoscopic systems with disorder, either by atomic defects or by fluctuations in their geometric definitions and we discuss various forms of disorder averages.Comment: 34 pages, revtex, 1 (postscript) figur

    Bound-free pair production in ultra-relativistic ion collisions at the LHC collider: Analytic approach to the total and differential cross sections

    Get PDF
    A theoretical investigation of the bound-free electron-positron pair production in relativistic heavy ion collisions is presented. Special attention is paid to the positrons emitted under large angles with respect to the beam direction. The measurement of these positrons in coincidence with the down--charged ions is in principle feasible by LHC experiments. In order to provide reliable estimates for such measurements, we employ the equivalent photon approximation together with the Sauter approach and derive simple analytic expressions for the differential pair--production cross section, which compare favorably to the results of available numerical calculations. Based on the analytic expressions, detailed calculations are performed for collisions of bare Pb82+^{82+} ions, taking typical experimental conditions of the LHC experiments into account. We find that the expected count rate strongly depends on the experimental parameters and may be significantly enhanced by increasing the positron-detector acceptance cone.Comment: 10 pages, 4 figure

    Highly asymmetric magnetic domain wall propagation due to coupling to a periodic pinning potential

    Get PDF
    Magneto-optical microscopy and magnetometry have been used to study 19 magnetization reversal in an ultrathin magnetically soft [Pt/Co]2 ferromagnetic film 20 coupled to an array of magnetically harder [Co/Pt]4 nanodots via a predominantly 21 dipolar interaction across a 3 nm Pt spacer. This interaction generates a spatially 22 periodic pinning potential for domain walls propagating through the continuous 23 magnetic film. When reversing the applied field with respect to the static nanodot 24 array magnetization orientation, strong asymmetries in the wall velocity and switching 25 fields are observed. Asymmetric switching fields mean that the hysteresis of the film is 26 characterized by a large bias field of dipolar origin which is linked to the wall velocity 27 asymmetry. This latter asymmetry, though large at low fields, vanishes at high fields 28 where the domains become round and compact. A field-polarity-controlled transition 29 from dendritic to compact faceted domain structures is also seen at low field and a 30 model is proposed to interpret the transition
    corecore