73 research outputs found

    Murine Models for Trypanosoma brucei gambiense Disease Progression—From Silent to Chronic Infections and Early Brain Tropism

    Get PDF
    Trypanosoma brucei gambiense is responsible for more than 90% of reported cases of human African trypanosomosis (HAT). Infection can last for months or even years without major signs or symptoms of infection, but if left untreated, sleeping sickness is always fatal. In the present study, different T. b. gambiense field isolates from the cerebrospinal fluid of patients with HAT were adapted to growth in vitro. These isolates belong to the homogeneous Group 1 of T. b. gambiense, which is known to induce a chronic infection in humans. In spite of this, these isolates induced infections ranging from chronic to silent in mice, with variations in parasitaemia, mouse lifespan, their ability to invade the CNS and to elicit specific immune responses. In addition, during infection, an unexpected early tropism for the brain as well as the spleen and lungs was observed using bioluminescence analysis. The murine models presented in this work provide new insights into our understanding of HAT and allow further studies of parasite tropism during infection, which will be very useful for the treatment and the diagnosis of the disease

    Complete In Vitro Life Cycle of Trypanosoma congolense: Development of Genetic Tools

    Get PDF
    Trypanosoma congolense is a parasite responsible for severe disease of African livestock. Its life cycle is complex and divided into two phases, one in the tsetse fly vector and one in the bloodstream of the mammalian host. Molecular tools for gene function analyses in parasitic organisms are essential. Previous studies described the possibility of completing the entire T. congolense life cycle in vitro. However, the model showed major flaws including the absence of stable long-term culture of the infectious bloodstream forms, a laborious time-consuming period to perform the cycle and a lack of genetic tools. We therefore aimed to develop a standardized model convenient for genetic engineering. We succeeded in producing long-term cultures of all the developmental stages on long-term, to define all the differentiation steps and to finally complete the whole cycle in vitro. This improved model offers the opportunity to conduct phenotype analyses of genetically modified strains throughout the in vitro cycle and also during experimental infections

    Erythrophagocytosis of desialylated red blood cells is responsible for anaemia during Trypanosoma vivax infection.

    No full text
    International audienceTrypanosomal infection-induced anaemia is a devastating scourge for cattle in widespread regions. Although Trypanosoma vivax is considered as one of the most important parasites regarding economic impact in Africa and South America, very few in-depth studies have been conducted due to the difficulty of manipulating this parasite. Several hypotheses were proposed to explain trypanosome induced-anaemia but mechanisms have not yet been elucidated. Here, we characterized a multigenic family of trans-sialidases in T. vivax, some of which are released into the host serum during infection. These enzymes are able to trigger erythrophagocytosis by desialylating the major surface erythrocytes sialoglycoproteins, the glycophorins. Using an ex vivo assay to quantify erythrophagocytosis throughout infection, we showed that erythrocyte desialylation alone results in significant levels of anaemia during the acute phase of the disease. Characterization of virulence factors such as the trans-sialidases is vital to develop a control strategy against the disease or parasite
    • …
    corecore