26 research outputs found
Mesoscale eddies: Hotspots of prokaryotic activity and differential community structure in the ocean
14 pages, 9 figures, 2 tablesTo investigate the effects of mesoscale eddies on prokaryotic assemblage structure and activity, we sampled two cyclonic eddies (CEs) and two anticyclonic eddies (AEs) in the permanent eddy-field downstream the Canary Islands. The eddy stations were compared with two far-field (FF) stations located also in the Canary Current, but outside the influence of the eddy field. The distribution of prokaryotic abundance (PA), bulk prokaryotic heterotrophic activity (PHA), various indicators of single-cell activity (such as nucleic acid content, proportion of live cells, and fraction of cells actively incorporating leucine), as well as bacterial and archaeal community structure were determined from the surface to 2000 m depth. In the upper epipelagic layer (0-200 m), the effect of eddies on the prokaryotic community was more apparent, as indicated by the higher PA, PHA, fraction of living cells, and percentage of active cells incorporating leucine within eddies than at FF stations. Prokaryotic community composition differed also between eddy and FF stations in the epipelagic layer. In the mesopelagic layer (200-1000 m), there were also significant differences in PA and PHA between eddy and FF stations, although in general, there were no clear differences in community composition or single-cell activity. The effects on prokaryotic activity and community structure were stronger in AE than CE, decreasing with depth in both types of eddies. Overall, both types of eddies show distinct community compositions (as compared with FF in the epipelagic), and represent oceanic hotspots of prokaryotic activity (in the epi- and mesopelagic realms)This research was supported by two grants of the Spanish Ministry of Education and Science to JA (Oceanic Eddies and Atmospheric Deposition—RODA, CTM 2004-06842-C03/MAR, and Shelf–Ocean Exchanges in the Canaries– Iberian Large Marine Ecosystem-CAIBEX, CTM 2007- 66498-C02), a grant of the Earth and Life Science Division of the Dutch Science Foundation (ALW-NWO; ARCHIMEDES project, 835.20.023) to GJH, and a predoctoral Fellowship of the Spanish Ministry of Education and Science (AP2005-3932) to FB. IL and JMG were also supported by project MODIVUS (CTM2005-04795/MAR). The work was carried out within the frame of the EU ‘Networks of Excellence’ MarBef and EurOceansPeer Reviewe
Effect of a Very-Low-Calorie Ketogenic Diet on Circulating Myokine Levels Compared with the Effect of Bariatric Surgery or a Low-Calorie Diet in Patients with Obesity
: The preservation of muscle mass and muscle function after weight loss therapy is currently a considerable challenge in the fight against obesity. Muscle mass secretes proteins called myokines that have relevant functions in the regulation of metabolism and health. This study was aimed to evaluate whether a very low-calorie ketogenic (VLCK) diet may modulate myokine levels, in addition to changes in body composition, compared to a standard, balanced low-calorie (LC) diet or bariatric surgery in patients with obesity. Body composition, ketosis, insulin sensitivity and myokines were evaluated in 79 patients with overweight/obesity after a therapy to lose weight with a VLCK diet, a LC diet or bariatric surgery. The follow-up was 6 months. The weight loss therapies induced changes in myokine levels in association with changes in body composition and biochemical parameters. The effects on circulating myokine levels compared to those at baseline were stronger after the VLCK diet than LC diet or bariatric surgery. Differences reached statistical significance for IL-8, MMP2 and irisin. In conclusion, nutritional interventions or bariatric surgery to lose weight induces changes in circulating myokine levels, being this effect potentially most notable after following a VLCK diet
Effect of a Very-Low-Calorie Ketogenic Diet on Circulating Myokine Levels Compared with the Effect of Bariatric Surgery or a Low-Calorie Diet in Patients with Obesity
The preservation of muscle mass and muscle function after weight loss therapy is currently a considerable challenge in the fight against obesity. Muscle mass secretes proteins called myokines that have relevant functions in the regulation of metabolism and health. This study was aimed to evaluate whether a very low-calorie ketogenic (VLCK) diet may modulate myokine levels, in addition to changes in body composition, compared to a standard, balanced low-calorie (LC) diet or bariatric surgery in patients with obesity. Body composition, ketosis, insulin sensitivity and myokines were evaluated in 79 patients with overweight/obesity after a therapy to lose weight with a VLCK diet, a LC diet or bariatric surgery. The follow-up was 6 months. The weight loss therapies induced changes in myokine levels in association with changes in body composition and biochemical parameters. The effects on circulating myokine levels compared to those at baseline were stronger after the VLCK diet than LC diet or bariatric surgery. Differences reached statistical significance for IL-8, MMP2 and irisin. In conclusion, nutritional interventions or bariatric surgery to lose weight induces changes in circulating myokine levels, being this effect potentially most notable after following a VLCK diet
Is There a Seamount Effect on Microbial Community Structure and Biomass? The Case Study of Seine and Sedlo Seamounts (Northeast Atlantic)
Seamounts are considered to be “hotspots” of marine life but, their role in oceans primary productivity is still under discussion. We have studied the microbial community structure and biomass of the epipelagic zone (0–150 m) at two northeast Atlantic seamounts (Seine and Sedlo) and compared those with the surrounding ocean. Results from two cruises to Sedlo and three to Seine are presented. Main results show large temporal and spatial microbial community variability on both seamounts. Both Seine and Sedlo heterotrophic community (abundance and biomass) dominate during winter and summer months, representing 75% (Sedlo, July) to 86% (Seine, November) of the total plankton biomass. In Seine, during springtime the contribution to total plankton biomass is similar (47% autotrophic and 53% heterotrophic). Both seamounts present an autotrophic community structure dominated by small cells (nano and picophytoplankton). It is also during spring that a relatively important contribution (26%) of large cells to total autotrophic biomass is found. In some cases, a “seamount effect” is observed on Seine and Sedlo microbial community structure and biomass. In Seine this is only observed during spring through enhancement of large autotrophic cells at the summit and seamount stations. In Sedlo, and despite the observed low biomasses, some clear peaks of picoplankton at the summit or at stations within the seamount area are also observed during summer. Our results suggest that the dominance of heterotrophs is presumably related to the trapping effect of organic matter by seamounts. Nevertheless, the complex circulation around both seamounts with the presence of different sources of mesoscale variability (e.g. presence of meddies, intrusion of African upwelling water) may have contributed to the different patterns of distribution, abundances and also changes observed in the microbial community
Transient Changes in Bacterioplankton Communities Induced by the Submarine Volcanic Eruption of El Hierro (Canary Islands)
Postprint4,411
Microbial Functioning and Community Structure Variability in the Mesopelagic and Epipelagic Waters of the Subtropical Northeast Atlantic Ocean
8 pages, 7 figures, 1 tableWe analyzed the regional distribution of bulk heterotrophic prokaryotic activity (leucine incorporation) and selected single-cell parameters (cell viability and nucleic acid content) as parameters for microbial functioning, as well as bacterial and archaeal community structure in the epipelagic (0 to 200 m) and mesopelagic (200 to 1,000 m) subtropical Northeast Atlantic Ocean. We selectively sampled three contrasting regions covering a wide range of surface productivity and oceanographic properties within the same basin: (i) the eddy field south of the Canary Islands, (ii) the open-ocean NE Atlantic Subtropical Gyre, and (iii) the upwelling filament off Cape Blanc. In the epipelagic waters, a high regional variation in hydrographic parameters and bacterial community structure was detected, accompanied, however, by a low variability in microbial functioning. In contrast, mesopelagic microbial functioning was highly variable between the studied regions despite the homogeneous abiotic conditions found therein. More microbial functioning parameters indicated differences among the three regions within the mesopelagic (i.e., viability of cells, nucleic acid content, cell-specific heterotrophic activity, nanoflagellate abundance, prokaryote-to-nanoflagellate abundance ratio) than within the epipelagic (i.e., bulk activity, nucleic acid content, and nanoflagellate abundance) waters. Our results show that the mesopelagic realm in the Northeast Atlantic is, in terms of microbial activity, more heterogeneous than its epipelagic counterpart, probably linked to mesoscale hydrographical variationsThis research was supported by the Spanish “Plan Nacional de I D” (MEC) under the RODA (CTM2004-06842-C03-03/MAR) and CAIBEX (CTM2007-66408-C02-02) grants to J.A.; a grant of the Earth and Life Science Division of the Dutch Science Foundation (ALW-NWO; ARCHIMEDES project, 835.20.023) to G.J.H.; and a predoctoral Fellowship of the Spanish Ministry of Education and Science (AP2005-3932) and a postdoctoral grant under the MOCA (European Science Foundation – Eurocores Program Evolutionary and Ecological Functional Genomics) project to F.B. Projects MODIVUS (CTM2005-04795/MAR) and STORM (CTM2009-09352/MAR) supported J.M.G. We thank the captain and crew of R/V BIO Hespérides for their support at sea and M. Espino for the determination of nanoflagellate abundancesPeer reviewe
Mesoscale eddies: Hotspots of prokaryotic activity and differential community structure in the ocean
14 pages, 9 figures, 2 tablesTo investigate the effects of mesoscale eddies on prokaryotic assemblage structure and activity, we sampled two cyclonic eddies (CEs) and two anticyclonic eddies (AEs) in the permanent eddy-field downstream the Canary Islands. The eddy stations were compared with two far-field (FF) stations located also in the Canary Current, but outside the influence of the eddy field. The distribution of prokaryotic abundance (PA), bulk prokaryotic heterotrophic activity (PHA), various indicators of single-cell activity (such as nucleic acid content, proportion of live cells, and fraction of cells actively incorporating leucine), as well as bacterial and archaeal community structure were determined from the surface to 2000 m depth. In the upper epipelagic layer (0-200 m), the effect of eddies on the prokaryotic community was more apparent, as indicated by the higher PA, PHA, fraction of living cells, and percentage of active cells incorporating leucine within eddies than at FF stations. Prokaryotic community composition differed also between eddy and FF stations in the epipelagic layer. In the mesopelagic layer (200-1000 m), there were also significant differences in PA and PHA between eddy and FF stations, although in general, there were no clear differences in community composition or single-cell activity. The effects on prokaryotic activity and community structure were stronger in AE than CE, decreasing with depth in both types of eddies. Overall, both types of eddies show distinct community compositions (as compared with FF in the epipelagic), and represent oceanic hotspots of prokaryotic activity (in the epi- and mesopelagic realms)This research was supported by two grants of the Spanish Ministry of Education and Science to JA (Oceanic Eddies and Atmospheric Deposition—RODA, CTM 2004-06842-C03/MAR, and Shelf–Ocean Exchanges in the Canaries– Iberian Large Marine Ecosystem-CAIBEX, CTM 2007- 66498-C02), a grant of the Earth and Life Science Division of the Dutch Science Foundation (ALW-NWO; ARCHIMEDES project, 835.20.023) to GJH, and a predoctoral Fellowship of the Spanish Ministry of Education and Science (AP2005-3932) to FB. IL and JMG were also supported by project MODIVUS (CTM2005-04795/MAR). The work was carried out within the frame of the EU ‘Networks of Excellence’ MarBef and EurOceansPeer Reviewe
Evidence of prokaryotic metabolism on suspended particulate organic matter in the dark waters of the subtropical North Atlantic
12 pages, 6 figures, 2 tablesThe distribution of prokaryotic abundance (PA), respiratory activity (ETS), heterotrophic production (PHP), and suspended particulate (POM) and dissolved (DOM) organic matter was determined in the meso- and bathypelagic waters of the (sub)tropical North Atlantic. PA decreased by one order of magnitude from the lower euphotic zone to the bathypelagic waters, while ETS decreased by two and PHP by three orders of magnitude. On a section following the Mid-Atlantic Ridge from 35uN to 5uN, ETS below 1000-m depth increased southwards up to three-fold. This latitudinal gradient in the deep waters was paralleled by a six-fold increase in Particulate Organic Carbon (POC), whereas no trend was apparent in the DOM distribution. Significant correlations between POM and ETS were obtained in the water masses between 1000-m and 3000-m depth, the Antarctic Intermediate Water and the North East Atlantic Deep Water. A strong imbalance in the dark ocean was found between prokaryotic carbon demand (estimated through two different approaches) and the carbon sinking flux derived from sediment-trap records corrected with 230Th. The imbalance was greater when deeper in the water column, suggesting that the suspended carbon pool must account for most of the carbon deficit. Our results, together with other recent findings discussed in this paper, indicate that microbial life in the dark ocean is likely more dependent on slowly sinking or buoyant, laterally advected suspended particles than hitherto assumedPeer reviewe
Significance of non-sinking particulate organic carbon and dark CO2 fixation to heterotrophic carbon demand in the mesopelagic northeast Atlantic
6 pages, 1 figure, 2 tablesIt is generally assumed that sinking particulate organic carbon (POC) constitutes the main source of organic carbon supply to the deep ocean¡̄s food webs. However, a major discrepancy between the rates of sinking POC supply (collected with sediment traps) and the prokaryotic organic carbon demand (the total amount of carbon required to sustain the heterotrophic metabolism of the prokaryotes; i.e., production plus respiration, PCD) of deep-water communities has been consistently reported for the dark realm of the global ocean. While the amount of sinking POC flux declines exponentially with depth, the concentration of suspended, buoyant non-sinking POC (nsPOC; obtained with oceanographic bottles) exhibits only small variations with depth in the (sub)tropical Northeast Atlantic. Based on available data for the North Atlantic we show here that the sinking POC flux would contribute only 4̈C12% of the PCD in the mesopelagic realm (depending on the primary production rate in surface waters). The amount of nsPOC potentially available to heterotrophic prokaryotes in the mesopelagic realm can be partly replenished by dark dissolved inorganic carbon fixation contributing between 12% to 72% to the PCD daily. Taken together, there is evidence that the mesopelagic microheterotrophic biota is more dependent on the nsPOC pool than on the sinking POC supply. Hence, the enigmatic major mismatch between the organic carbon demand of the deep-water heterotrophic microbiota and the POC supply rates might be substantially smaller by including the potentially available nsPOC and its autochthonous production in oceanic carbon cycling modelsThis research was supported by a predoctoral Fellowship of the Spanish Ministry of Education and Science (AP2005‐3932) to F.B., a grant of the Earth and Life Science Division of the Dutch Science Foundation (ALW‐NWO; ARCHIMEDES project, 835.20.023) to G.J.H. and a grant of the Spanish Ministry of Education and Science to J. A. (Remolinos Oceánicos y Deposiciones Atmosféricas (RODA) project; CTM 2004‐06842‐C03/MAR). The work was carried out within the frame of the EU ‘Networks of Excellence’ MarBef and EurOceansPeer Reviewe
High dissolved extracellular enzymatic activity in the deep central Atlantic Ocean
16 pages, 6 figures, 2 tablesThe distribution of prokaryotic abundance (PA), prokaryotic heterotrophic production (PHP), and suspended particulate organic material (POM), as well as total and dissolved (operationally defined as passing through 0.2 µm pore size filters) potential extracellular enzymatic activities (EEA; α- and β-glucosidase [AGase and BGase], leucine aminopeptidase [LAPase], and alkaline phosphatase [APase]) were determined in the meso- and bathypelagic waters of the (sub)tropical Atlantic along an eastern zonal transatlantic transect and a western N-S transect. Significant differences between both transects were found for POM concentration but not for PA, PHP (except in the subsurface and oxygen minimum layer), and dissolved and total EEA. PHP decreased by 3 orders of magnitude from the lower euphotic zone to bathypelagic waters, while PA and cell-specific PHP decreased only by 1 and 2 orders of magnitude, respectively. The proportion of the dissolved to the total EEA was high in the dark ocean for all the enzymes, ranging from 54 to 100, 56 to 100, 65 to 100 and 57 to 97% for AGase, BGase, LAPase and APase, respectively. The kinetic parameters (Vmax and Km) of both the dissolved and total fractions of LAPase and APase were very similar throughout the water column, suggesting a similar origin for both dissolved and particulate EEA. Significant correlations of both dissolved and total EEA were found with prokaryotic metabolism and the POM pool. Based on the previous notion that the fraction of dissolved EEA is higher in particle-attached than in free-living microbes, our results suggest that microbial activity in the dark ocean occurs mainly on colloidal and particulate material. This is in agreement with recent genomic evidence. However, these colloidal and particulate materials are prone to disruption during the sampling process. Hence, more selective sampling techniques are needed to specifically collect these deep-water aggregates that probably represent hotspots of microbial activity in the deep oceanThis research was supported by a predoctoral fellowship of the Spanish Ministry of Education and Science (AP2005-3932) to F.B., a grant of the Earth and Life Science Division of the Dutch Science Foundation (ALW-NWO; ARCHIMEDES project, 835.20.023) to G.J.H., and a grant of the Spanish Ministry of Education and Science to J.A. (Remolinos Oceánicos y Deposición Atmosférica (RODA) project; CTM 2004-06842-C03/MAR). The work was carried out within the framework of the EU ‘Networks of Excellence’ MarBef and EurOceansPeer reviewe