92 research outputs found

    Metabolic profiling of HepG2 cells incubated with S(−) and R(+) enantiomers of anti-coagulating drug warfarin

    Get PDF
    Warfarin is a commonly prescribed oral anticoagulant with narrow therapeutic index. It achieves anti-coagulating effects by interfering with the vitamin K cycle. Warfarin has two enantiomers, S(−) and R(+) and undergoes stereoselective metabolism, with the S(−) enantiomer being more effective. We reported the intracellular metabolic profile in HepG2 cells incubated with S(−) and R(+) warfarin by GCMS. Chemometric method PCA was applied to analyze the individual samples. A total of 80 metabolites which belong to different categories were identified. Two batches of experiments (with and without the presence of vitamin K) were designed. In samples incubated with S(−) and R(+) warfarin, glucuronic acid showed significantly decreased in cells incubated with R(+) warfarin but not in those incubated with S(−) warfarin. It may partially explain the lower bio-activity of R(+) warfarin. And arachidonic acid showed increased in cells incubated with S(−) warfarin but not in those incubated with R(+) warfarin. In addition, a number of small molecules involved in γ-glutamyl cycle displayed ratio variations. Intracellular glutathione detection further validated the results. Taken together, our findings provided molecular evidence on a comprehensive metabolic profile on warfarin-cell interaction which may shed new lights on future improvement of warfarin therapy

    Genetic polymorphisms in MDR1, CYP3A4 and CYP3A5 genes in a Ghanaian population: a plausible explanation for altered metabolism of ivermectin in humans?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ivermectin, a substrate of multidrug resistance (MDR1) gene and cytochrome P450 (CYP) 3A4, has been used successfully in the treatment of onchocerciasis in Ghana. However, there have been reports of suboptimal response in some patients after repeated treatment. Polymorphisms in host MDR1 and CYP3A genes may explain the observed suboptimal response to ivermectin. We genotyped relevant functional polymorphisms of MDR1 and CYP3A in a random sample of healthy Ghanaians and compared the data with that of ivermectin-treated patients with a view to exploring the relationship between suboptimal response to ivermectin and MDR1 and CYP3A allelic frequencies.</p> <p>Methods</p> <p>Using PCR-RFLP, relevant polymorphic alleles of MDR1 and CYP3A4 genes were analysed in 204 randomly selected individuals and in 42 ivermectin treated patients.</p> <p>Results</p> <p>We recorded significantly higher MDR1 (3435T) variant allele frequency in suboptimal responders (21%) than in patients who responded to treatment (12%) or the random population sample (11%). <it>CYP3A4*1B</it>, <it>CYP3A5*3 </it>and <it>CYP3A5*6 </it>alleles were detected at varied frequencies for the sampled Ghanaian population, responders and suboptimal responders to ivermectin. <it>CYP3A5*1/CYP3A5*1 </it>and <it>CYP3A5*1/CYP3A5*3 </it>genotypes were also found to be significantly different for responders and suboptimal responders. Haplotype (*1/*1/*3/*1) was determined to be significantly different between responders and suboptimal responders indicating a possible role of these haplotypes in treatment response with ivermectin.</p> <p>Conclusion</p> <p>A profile of pharmacogenetically relevant variants for MDR1, CYP3A4 and CYP3A5 genes has been generated for a random population of 204 Ghanaians to address the scarcity of data within indigenous African populations. In 42 patients treated with ivermectin, difference in MDR1 variant allele frequency was observed between suboptimal responders and responders.</p

    VKORC1 Pharmacogenetics and Pharmacoproteomics in Patients on Warfarin Anticoagulant Therapy: Transthyretin Precursor as a Potential Biomarker

    Get PDF
    Recognizing specific protein changes in response to drug administration in humans has the potential for the development of personalized medicine. Such changes can be identified by pharmacoproteomics approach based on proteomic technologies. It can also be helpful in matching a particular target-based therapy to a particular marker in a subgroup of patients, in addition to the profile of genetic polymorphism. Warfarin is a commonly prescribed oral anticoagulant in patients with prosthetic valve disease, venous thromboembolism and stroke.We used a combined pharmacogenetics and iTRAQ-coupled LC-MS/MS pharmacoproteomics approach to analyze plasma protein profiles of 53 patients, and identified significantly upregulated level of transthyretin precursor in patients receiving low dose of warfarin but not in those on high dose of warfarin. In addition, real-time RT-PCR, western blotting, human IL-6 ELISA assay were done for the results validation.This combined pharmacogenomics and pharmacoproteomics approach may be applied for other target-based therapies, in matching a particular marker in a subgroup of patients, in addition to the profile of genetic polymorphism

    Research Highlights

    No full text
    corecore