14 research outputs found
Contribution à l’étude du traitement de résidus médicamenteux dans les milieux aqueux par plasmas non thermiques. Application au paracétamol et à l’ésoméprazole
Many drug molecules are not effectively treated by conventional techniques used in wastewater treatment plants and accumulate in natural environments. The objective of this thesis was to develop an advanced oxidation process using a non-thermal plasma generated by electric discharge for the treatment of drug molecules (paracetamol and esomeprazole). The NTP treatments were carried out using two reactors: a multiple needle-to-plate reactor with the plasma in direct contact with the liquid to be treated and a wire-cylinder reactor with the plasma up stream of the liquid to be treated. Conversion rates higher than 80% have been obtained with energy yields, which can reach 8 g/kWh and 39 g/kWh for paracetamol and esomeprazole, respectively. The electrical discharge created between the need leand the liquid has been characterized by optical emission spectroscopy to observe the presence of the oxidative species produced by the plasma and to estimate the temperature of the ionized medium. The species produced in the liquid during the degradation of paracetamol and esomeprazole have been identified by the HRMS technique. The produced species, are mainly carboxylic acids as well as nitrogen products. The identification of production pathways for the formation of the main products has been studied particularly using numerous chemical methods such as HPLC/MS, MS/MS, and different labelling of paracetamol. It has been proven that the main carboxylic acids produced come from the breaking of the aromatic ring. In conclusion, this study allowed us to obtain energy efficiencies of treatment of the two study molecules comparable to those found in literature, and especially to establish a pathways of degradation of paracetamol.De nombreuses molécules médicamenteuses ne sont pas traitées efficacement par les techniques classiques utilisées dans les stations d'épuration et s’accumulent dans les milieux naturels. L’objectif de cette thèse a été de développer un procédé d’oxydation avancée utilisant un plasma non thermique généré par décharge électrique pour le traitement de molécules médicamenteuses et d’identifier le schéma de dégradation d’une des molécules d’étude, à savoir le paracétamol. Les traitements ont été réalisés à l’aide de deux réacteurs : un réacteur multi-pointes avec le plasma au contact direct du liquide à traiter et un réacteur fil-cylindre avec le plasma en amont du liquide à traiter. Des taux de conversion supérieurs à 80% ont pu être obtenus avec des rendements énergétiques, qui peuvent atteindre 8g/kWh et 39 g/kWh pour le paracétamol et l’ésoméprazole, respectivement. La décharge électrique créée entre une pointe et le liquide a été caractérisée par la spectroscopie d’émission optique afin d’observer la présence des espèces oxydantes produites par le plasma et d’estimer la température du milieu faiblement ionisé. Les espèces produites dans le liquide lors de la dégradation du paracétamol et de l’ésoméprazole qui ont été identifiées par la technique HRMS, entre autres, sont principalement des acides carboxyliques ainsi que des produits azotés. L’identification des voies de production pour la formation des principaux produits ont été étudiés particulièrement à l’aide de nombreuses méthodes chimiques comme HPLC/MS, MS/MS, et de différents marquages de paracétamol. Il a été prouvé que les principaux acides carboxyliques produits proviennent de la rupture du cycle aromatique. En conclusion, cette étude nous a permis d’obtenir des rendements énergétiques de traitement des deux molécules d’étude comparables à ceux retrouvés en littérature, et surtout d’établir un chemin de dégradation du paracétamol
Contribution to the study of pharmaceutical residues treatment in aqueous solution by non-thermal plasmas. Application to paracetamol and esomeprazole
De nombreuses molécules médicamenteuses ne sont pas traitées efficacement par les techniques classiques utilisées dans les stations d'épuration et s’accumulent dans les milieux naturels. L’objectif de cette thèse a été de développer un procédé d’oxydation avancée utilisant un plasma non thermique généré par décharge électrique pour le traitement de molécules médicamenteuses et d’identifier le schéma de dégradation d’une des molécules d’étude, à savoir le paracétamol. Les traitements ont été réalisés à l’aide de deux réacteurs : un réacteur multi-pointes avec le plasma au contact direct du liquide à traiter et un réacteur fil-cylindre avec le plasma en amont du liquide à traiter. Des taux de conversion supérieurs à 80% ont pu être obtenus avec des rendements énergétiques, qui peuvent atteindre 8g/kWh et 39 g/kWh pour le paracétamol et l’ésoméprazole, respectivement. La décharge électrique créée entre une pointe et le liquide a été caractérisée par la spectroscopie d’émission optique afin d’observer la présence des espèces oxydantes produites par le plasma et d’estimer la température du milieu faiblement ionisé. Les espèces produites dans le liquide lors de la dégradation du paracétamol et de l’ésoméprazole qui ont été identifiées par la technique HRMS, entre autres, sont principalement des acides carboxyliques ainsi que des produits azotés. L’identification des voies de production pour la formation des principaux produits ont été étudiés particulièrement à l’aide de nombreuses méthodes chimiques comme HPLC/MS, MS/MS, et de différents marquages de paracétamol. Il a été prouvé que les principaux acides carboxyliques produits proviennent de la rupture du cycle aromatique. En conclusion, cette étude nous a permis d’obtenir des rendements énergétiques de traitement des deux molécules d’étude comparables à ceux retrouvés en littérature, et surtout d’établir un chemin de dégradation du paracétamol.Many drug molecules are not effectively treated by conventional techniques used in wastewater treatment plants and accumulate in natural environments. The objective of this thesis was to develop an advanced oxidation process using a non-thermal plasma generated by electric discharge for the treatment of drug molecules (paracetamol and esomeprazole). The NTP treatments were carried out using two reactors: a multiple needle-to-plate reactor with the plasma in direct contact with the liquid to be treated and a wire-cylinder reactor with the plasma up stream of the liquid to be treated. Conversion rates higher than 80% have been obtained with energy yields, which can reach 8 g/kWh and 39 g/kWh for paracetamol and esomeprazole, respectively. The electrical discharge created between the need leand the liquid has been characterized by optical emission spectroscopy to observe the presence of the oxidative species produced by the plasma and to estimate the temperature of the ionized medium. The species produced in the liquid during the degradation of paracetamol and esomeprazole have been identified by the HRMS technique. The produced species, are mainly carboxylic acids as well as nitrogen products. The identification of production pathways for the formation of the main products has been studied particularly using numerous chemical methods such as HPLC/MS, MS/MS, and different labelling of paracetamol. It has been proven that the main carboxylic acids produced come from the breaking of the aromatic ring. In conclusion, this study allowed us to obtain energy efficiencies of treatment of the two study molecules comparable to those found in literature, and especially to establish a pathways of degradation of paracetamol
Experimental assessment of ozone production by multichannel plasma discharges for automotive applications
International audienc
Preliminary Study of a Non-thermal Plasma for the Degradation of the Paracetamol Residue in Water
International audienc
Paracetamol degradation in aqueous solution by non-thermal plasma
International audienceThis study deals with paracetamol degradation in water using a non-thermal plasma (NTP) created by a dielectric barrier discharge (DBD). The effects of the NTP operating conditions on the degradation were studied, showing that the treatment efficiency of the process was highly dependent on the electrical parameters and working gas composition in the reactor containing the aqueous solution. A conversion rate higher than 99% was reached with an energy yield of 12 g/kWh. High resolution mass spectrometry (HRMS) measurements showed that the main species produced in water during the process were nitrogen compounds, carboxylic acids and aromatic compounds
Evidence of the paracetamol’s aromatic ring breaking thanks to a non-thermal plasma
International audienc
Evidence of the aromatic cycle breaking of paracetamol by non-thermal plasma:
OralInternational audienc
DEGRADATION OF PARACETAMOL IN AQUEOUS SOLUTION BY NON THERMAL PLASMA
International audienceIn this study, the paracetamol degradation in water was investigated using Non Thermal Plasmas (NTP) created by Dielectric Barrier Discharges. The effects of the operating conditions (applied voltage, inlet gas composition) on the degradation were studied. A conversion rate higher than 90% was reached with an energy yield of 1 g/kWh. We showed that the efficiency of the process highly depends on electrical parameters and gas composition injected in the reactor containing the aqueous solution. The main produced species in water were nitrogen compounds, carboxylic acids and aromatic compounds. 1 Introduction Pharmaceutical substances like paracetamol are frequently present in groundwater, and present a long-term risk for the environment and health [1]. We propose to use Advanced Oxidation Processes (AOPs) using Non Thermal Plasmas to degrade these drug residues. AOPs generally refer to a specific subset of processes which produces oxidizing species such as O, O3, OH â—Ź and H2O2. AOPs can also involve TiO2 catalysis, Fenton's reaction, and Non Thermal Plasma (NTP) [2,3]. Here, we use a NTP process which was generated by Dielectric Barrier Discharge, because they have proved to be effective for the production of oxidizing species. These processes have already been applied for the treatment of pharmaceutical compounds in aqueous media but differed in the type of plasma reactor [3,4]. To get a better understanding of degradation mechanisms, it is important to study the effects of the electrical parameters of the reactor and operating conditions on the treatment of pollutants and the generated products. So, in this work which deals with the treatment of paracetamol in liquid by non-thermal plasma process, the effects of the nature of the working gas into the solution and the plasma reactor operating parameters (voltage, power) on the conversion rate and the generated products were studied